A293238 Decimal expansion of the escape probability for a random walk on the 3D bcc lattice.
7, 1, 7, 7, 7, 0, 0, 1, 1, 0, 4, 6, 1, 2, 9, 9, 9, 7, 8, 2, 1, 1, 9, 3, 2, 2, 3, 6, 6, 5, 7, 7, 9, 4, 2, 6, 6, 5, 7, 1, 2, 9, 8, 8, 9, 3, 3, 9, 9, 8, 4, 3, 7, 1, 9, 8, 9, 7, 6, 3, 6, 6, 3, 8, 7, 7, 2, 6, 9, 4, 2, 3, 1, 2, 5, 8, 4, 9, 8, 6, 6, 3, 7, 0, 1, 6, 1
Offset: 0
Examples
0.7177700110461299978211932236657794...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
- Shunya Ishioka and Masahiro Koiwa, Random walks on diamond and hexagonal close packed lattices, Phil. Mag. A, 37 (1978), 517-533.
- G. L. Montet, Integral methods in the calculation of correlation factors in diffusion, Phys. Rev. B 7 (1973), 650-662.
- Index entries for sequences related to b.c.c. lattice.
- Index entries for sequences related to walks.
Programs
-
Magma
SetDefaultRealField(RealField(100)); R:= RealField(); (4*Pi(R)^3)/Gamma(1/4)^4; // G. C. Greubel, Oct 26 2018
-
Mathematica
RealDigits[(4*Pi^3)/Gamma[1/4]^4, 10, 100][[1]] (* G. C. Greubel, Oct 26 2018 *)
-
PARI
default(realprecision, 100); (4*Pi^3)/gamma(1/4)^4 \\ G. C. Greubel, Oct 26 2018
Formula
Equals Pi^2/(4*K(1/sqrt(2))^2), where K is the complete elliptic integral of the first kind.
Equals (4*Pi^3)/Gamma(1/4)^4. - G. C. Greubel, Oct 26 2018
Equals Product_{n>=1} exp(beta(2n)/n), where beta(n) is the Dirichlet beta function. - Antonio GraciĆ” Llorente, Apr 03 2025
Equals Gamma(3/4)^4/Pi. - Stefano Spezia, Apr 05 2025
Comments