cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A232103 Square array read by antidiagonals: T(m,n) = number of ways of drawing a simple loop on an m x n rectangular lattice of dots in such a way that it touches each edge.

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 1, 15, 15, 1, 1, 39, 106, 39, 1, 1, 97, 582, 582, 97, 1, 1, 237, 2952, 6074, 2952, 237, 1, 1, 575, 14488, 56778, 56778, 14488, 575, 1, 1, 1391, 69982, 510600, 943340, 510600, 69982, 1391, 1, 1, 3361, 335356, 4502836, 15009212, 15009212
Offset: 1

Views

Author

Douglas Boffey, Nov 21 2013

Keywords

Comments

This sequence is to be read as a table:
1, 1, 1, 1, 1, ...
1, 5, 15, 39, ...
1, 15, 106, ...
1, 39, ...
1, ...
...
This represents the number of simple, closed loops that can be formed on an m x n lattice of dots in such a way that it touches each edge.
This sequence is related to A231829, called b(i,j) by a(i,j) = b(i,j) - 2 * b(i,j-1) + b(i,j-2) - 2 * b(i-1,j) + 4 * b(i-1,j-1) - 2 * b(j-1,j-2) + b(i-2,j) - 2 * b(i-2,j-1) + b(i-2,j-2).
Equivalently, the number of fixed polyominoes without holes that have a width of m and height of n. - Andrew Howroyd, Oct 04 2017

Examples

			Array begins:
==============================================================
m\n| 1   2     3       4         5           6            7
---|----------------------------------------------------------
1  | 1   1     1       1         1           1            1...
2  | 1   5    15      39        97         237          575...
3  | 1  15   106     582      2952       14488        69982...
4  | 1  39   582    6074     56778      510600      4502836...
5  | 1  97  2952   56778    943340    15009212    234411981...
6  | 1 237 14488  510600  15009212   419355340  11509163051...
7  | 1 575 69982 4502836 234411981 11509163051 554485727288...
... - _Andrew Howroyd_, Oct 04 2017
a(3,2) is 15, thus:
1)        2)        3)        4)        5)
+-+-+-+   +-+-+-+   + +-+-+   +-+-+-+   +-+-+-+
|     |   |     |     |   |   |     |   |     |
+ +-+-+   +-+ +-+   +-+ +-+   + + +-+   +-+-+ +
| |         | |     |   |     |   |         | |
+-+ + +   + +-+ +   +-+-+ +   +-+-+ +   + + +-+
6)        7)        8)        9)        10)
+-+-+-+   +-+-+ +   +-+-+-+   +-+ + +   + +-+ +
|     |   |   |     |     |   | |         | |
+ +-+ +   +-+ +-+   +-+ + +   + +-+-+   +-+ +-+
| | | |     |   |     |   |   |     |   |     |
+-+ +-+   + +-+-+   + +-+-+   +-+-+-+   +-+-+-+
11)       12)       13)       14)       15)
+-+-+ +   + + +-+   +-+ +-+   + +-+-+   +-+-+-+
|   |         | |   | | | |     |   |   |     |
+   +-+   +-+-+ +   + +-+ +   +-+ + +   + + + +
|     |   |     |   |     |   |     |   |     |
+-+-+-+   +-+-+-+   +-+-+-+   +-+-+-+   +-+-+-+
		

Crossrefs

Rows 2-3 are A034182, A293263.
Main diagonal is A293261.

Formula

T(m, n) = U(m, n) - 2*U(m, n-1) + U(m, n-2) where U(m, n) = V(m, n) - 2*V(m-1, n) + V(m-2, n) and V(m, n) = A231829(m, n). - Andrew Howroyd, Oct 04 2017
Showing 1-1 of 1 results.