cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293263 Number of fixed polyominoes without holes that have a width of n and height of 3.

Original entry on oeis.org

1, 15, 106, 582, 2952, 14488, 69982, 335356, 1600624, 7624266, 36279784, 172546968, 820420150, 3900386212, 18541702744, 88140749906, 418982915000, 1991645550032, 9467293435654, 45002706816100, 213919774521224, 1016864234903874, 4833646472767104
Offset: 1

Views

Author

Andrew Howroyd, Oct 04 2017

Keywords

Crossrefs

Row 3 of A232103.

Programs

  • Mathematica
    LinearRecurrence[{10,-34,49,-29,2,10,-5,-2},{1,15,106,582,2952,14488,69982,335356,1600624},30] (* Harvey P. Dale, Jan 22 2024 *)
  • PARI
    Vec((1 + 5*x - 10*x^2 - 17*x^3 + 30*x^4 - 5*x^5 - 14*x^6 + x^7 + x^8)/((1 - x)*(1 - 2*x - x^2)*(1 - 7*x + 12*x^2 - 7*x^3 + 3*x^4 + 2*x^5)) + O(x^40));

Formula

a(n) = 10*a(n-1) - 34*a(n-2) + 49*a(n-3) - 29*a(n-4) + 2*a(n-5) + 10*a(n-6) - 5*a(n-7) - 2*a(n-8) for n > 9.
G.f.: x*(1 + 5*x - 10*x^2 - 17*x^3 + 30*x^4 - 5*x^5 - 14*x^6 + x^7 + x^8)/((1 - x)*(1 - 2*x - x^2)*(1 - 7*x + 12*x^2 - 7*x^3 + 3*x^4 + 2*x^5)).