cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293296 a(n) = 2*n^2 - floor(n/4).

Original entry on oeis.org

0, 2, 8, 18, 31, 49, 71, 97, 126, 160, 198, 240, 285, 335, 389, 447, 508, 574, 644, 718, 795, 877, 963, 1053, 1146, 1244, 1346, 1452, 1561, 1675, 1793, 1915, 2040, 2170, 2304, 2442, 2583, 2729, 2879, 3033, 3190, 3352, 3518, 3688, 3861, 4039, 4221, 4407, 4596
Offset: 0

Views

Author

Peter Luschny, Oct 08 2017

Keywords

Crossrefs

Programs

  • Maple
    a := n -> 2*n^2 - floor(n/4): seq(a(n), n=0..48);
  • Mathematica
    LinearRecurrence[{2, -1, 0, 1, -2, 1}, {0, 2, 8, 18, 31, 49}, 49]
    Table[2n^2-Floor[n/4],{n,0,60}] (* Harvey P. Dale, Jan 08 2022 *)
  • PARI
    a(n) = 2*n^2-n\4; \\ Altug Alkan, Oct 08 2017
    
  • Python
    def A293296(n): return (n**2<<1)-(n>>2) # Chai Wah Wu, Jan 26 2023

Formula

a(n) = [x^n] (-x*(2+4*x+4*x^2+3*x^3+3*x^4)/((x+1)*(x^2+1)*(x-1)^3)).
a(n) = n! [x^n] (3*exp(x)-exp(-x)+14*exp(x)*x+16*exp(x)*x^2-2*cos(x)-2*sin(x))/8.
a(n) = a(n-6) - 2*a(n-5) + a(n-4) - a(n-2) + 2*a(n-1) for n >= 6.
(-1)^n*(a(n+3) - 3*a(n+2) + 3*a(n+1) - a(n)) = sqrt(n^2 mod 8) = A007877(n).