A293298 Triangle read by rows, a generalization of the Eulerian numbers based on Nielsen's generalized polylogarithm (case m = 3).
1, 0, 1, 0, 1, -2, 0, 1, -5, 2, 0, 1, -10, 5, 0, 1, -19, 1, 11, 0, 1, -36, -46, 84, 19, 0, 1, -69, -272, 358, 393, 29, 0, 1, -134, -1149, 916, 4171, 1322, 41, 0, 1, -263, -4237, -191, 31939, 26255, 3841, 55, 0, 1, -520, -14536, -20192, 200252, 348848, 130924, 10280, 71
Offset: 0
Examples
Triangle starts: {1} {0, 1} {0, 1, -2} {0, 1, -5, 2} {0, 1, -10, 5} {0, 1, -19, 1, 11} {0, 1, -36, -46, 84, 19} {0, 1, -69, -272, 358, 393, 29} {0, 1, -134, -1149, 916, 4171, 1322, 41} {0, 1, -263, -4237, -191, 31939, 26255, 3841, 55}
Links
- Eric Weisstein's World of Mathematics, Nielsen Generalized Polylogarithm.
Programs
Formula
Let p(n, m) = (m - 1)!*(1 - x)^n*PolyLog(-n, m, x) and P(n) the polynomial given by the expansion of p(n, m=3) after replacing log(1 - x) by 1. T(n, k) is the k-th coefficient of P(n).
Comments