A293315 The integer k that minimizes |k/2^n - r|, where r = golden ratio.
2, 3, 6, 13, 26, 52, 104, 207, 414, 828, 1657, 3314, 6627, 13255, 26510, 53020, 106039, 212079, 424158, 848316, 1696632, 3393263, 6786526, 13573053, 27146106, 54292211, 108584423, 217168846, 434337692, 868675383, 1737350766, 3474701533, 6949403065
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
Programs
-
Magma
[Floor((2^n*(1+Sqrt(5))+1)/2): n in [0..33]]; // Vincenzo Librandi, Oct 08 2017
-
Maple
A293315:=n->floor(1/2+2^n*(1+sqrt(5))/2): seq(A293315(n), n=0..40); # Wesley Ivan Hurt, Oct 06 2017
-
Mathematica
z = 120; r = GoldenRatio; Table[Floor[r*2^n], {n, 0, z}]; (* A293313 *) Table[Ceiling[r*2^n], {n, 0, z}]; (* A293314 *) Table[Round[r*2^n], {n, 0, z}]; (* A293315 *)
-
PARI
a(n) = (2^n*(1+sqrt(5))+1)\2; \\ Altug Alkan, Oct 06 2017