A293387 Expansion of (eta(q^2)^2/(eta(q)eta(q^3)))^2 in powers of q.
1, 2, 1, 4, 6, 2, 12, 16, 5, 28, 36, 12, 60, 76, 24, 120, 150, 46, 228, 280, 86, 416, 504, 152, 732, 878, 262, 1252, 1488, 442, 2088, 2464, 725, 3408, 3996, 1168, 5460, 6364, 1852, 8600, 9972, 2886, 13344, 15400, 4436, 20424, 23472, 6736, 30876, 35346, 10103
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
Programs
-
Mathematica
nmax = 100; CoefficientList[Series[Product[((1 - x^(2*k))^2/((1 - x^k)*(1 - x^(3*k))))^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 08 2017 *)
Formula
G.f.: Product_{k>0} ((1 - x^(2*k))^2/((1 - x^k)*(1 - x^(3*k))))^2.