A293419 a(n) is the least integer k such that k/Fibonacci(n) > sqrt(2).
0, 2, 2, 3, 5, 8, 12, 19, 30, 49, 78, 126, 204, 330, 534, 863, 1396, 2259, 3655, 5913, 9568, 15480, 25048, 40528, 65575, 106102, 171676, 277777, 449453, 727230, 1176683, 1903912, 3080595, 4984507, 8065101, 13049607, 21114707, 34164313, 55279019, 89443332
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
Programs
-
Magma
[Ceiling(Fibonacci(n)*Sqrt(2)): n in [0..30]]; // G. C. Greubel, Feb 08 2018
-
Mathematica
z = 120; r = Sqrt[2]; f[n_] := Fibonacci[n]; Table[Floor[r*f[n]], {n, 0, z}]; (* A293418 *) Table[Ceiling[r*f[n]], {n, 0, z}]; (* A293419 *) Table[Round[r*f[n]], {n, 0, z}]; (* A293420 *)
-
PARI
for(n=0, 30, print1(ceil(fibonacci(n)*sqrt(2)), ", ")) \\ G. C. Greubel, Feb 08 2018
Formula
a(n) = ceiling(Fibonacci(n)*sqrt(2)).
a(n) = A293418(n) + 1 for n > 0.