A293418 a(n) is the greatest integer k such that k/Fibonacci(n) < sqrt(2).
0, 1, 1, 2, 4, 7, 11, 18, 29, 48, 77, 125, 203, 329, 533, 862, 1395, 2258, 3654, 5912, 9567, 15479, 25047, 40527, 65574, 106101, 171675, 277776, 449452, 727229, 1176682, 1903911, 3080594, 4984506, 8065100, 13049606, 21114706, 34164312, 55279018, 89443331
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
Programs
-
Magma
[Floor(Fibonacci(n)*Sqrt(2)): n in [0..30]]; // G. C. Greubel, Feb 08 2018
-
Mathematica
z = 120; r = Sqrt[2]; f[n_] := Fibonacci[n]; Table[Floor[r*f[n]], {n, 0, z}]; (* A293418 *) Table[Ceiling[r*f[n]], {n, 0, z}]; (* A293419 *) Table[Round[r*f[n]], {n, 0, z}]; (* A293420 *)
-
PARI
for(n=0,30, print1(floor(fibonacci(n)*sqrt(2)), ", ")) \\ G. C. Greubel, Feb 08 2018
Formula
a(n) = floor(Fibonacci(n)*sqrt(2)).
a(n) = A293419(n) - 1 for n > 0.