A293422 The PDO_t(n) function (Number of tagged parts over all the partitions of n with designated summands in which all parts are odd).
1, 2, 4, 6, 10, 16, 24, 36, 52, 74, 104, 144, 196, 264, 352, 468, 614, 800, 1036, 1332, 1704, 2168, 2744, 3456, 4331, 5408, 6724, 8328, 10278, 12640, 15496, 18936, 23072, 28030, 33960, 41040, 49470, 59488, 71368, 85428, 102042, 121632, 144692, 171792, 203584
Offset: 1
Keywords
Examples
n = 4 n = 5 n = 6 ------------------- ----------------------- --------------------------- 3'+ 1' -> 2 5' -> 1 5'+ 1' -> 2 1'+ 1 + 1 + 1 -> 1 3'+ 1'+ 1 -> 2 3'+ 3 -> 1 1 + 1'+ 1 + 1 -> 1 3'+ 1 + 1' -> 2 3 + 3' -> 1 1 + 1 + 1'+ 1 -> 1 1'+ 1 + 1 + 1 + 1 -> 1 3'+ 1'+ 1 + 1 -> 2 1 + 1 + 1 + 1'-> 1 1 + 1'+ 1 + 1 + 1 -> 1 3'+ 1 + 1'+ 1 -> 2 1 + 1 + 1'+ 1 + 1 -> 1 3'+ 1 + 1 + 1' -> 2 1 + 1 + 1 + 1'+ 1 -> 1 1'+ 1 + 1 + 1 + 1 + 1 -> 1 1 + 1 + 1 + 1 + 1'-> 1 1 + 1'+ 1 + 1 + 1 + 1 -> 1 1 + 1 + 1'+ 1 + 1 + 1 -> 1 1 + 1 + 1 + 1'+ 1 + 1 -> 1 1 + 1 + 1 + 1 + 1'+ 1 -> 1 1 + 1 + 1 + 1 + 1 + 1'-> 1 ------------------- ----------------------- --------------------------- a(4) = 6. a(5) = 10. a(6) = 16.
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
- Bernard L. S. Lin, The number of tagged parts over the partitions with designated summands, Journal of Number Theory.
Programs
-
Mathematica
nmax = 50; CoefficientList[Series[Product[(1-x^(2*k)) * (1-x^(3*k))^2 * (1-x^(12*k))^2 / ((1-x^k)^2 * (1-x^(6*k))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 15 2017 *)
-
Ruby
def partition(n, min, max) return [[]] if n == 0 [max, n].min.downto(min).flat_map{|i| partition(n - i, min, i).map{|rest| [i, *rest]}} end def A(n) partition(n, 1, n).select{|i| i.all?{|j| j.odd?}}.map{|a| a.each_with_object(Hash.new(0)){|v, o| o[v] += 1}.values}.map{|i| i.size * i.inject(:*)}.inject(:+) end def A293422(n) (1..n).map{|i| A(i)} end p A293422(40)
Formula
G.f.: q * Product_{k>0} ((1 - q^(2*k))*(1 - q^(3*k))^2*(1 - q^(12*k))^2)/((1 - q^k)^2*(1 - q^(6*k))).
a(n) ~ exp(sqrt(5*n)*Pi/3) / (3 * 2^(3/2) * 5^(1/4) * n^(1/4)). - Vaclav Kotesovec, Oct 15 2017