cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293422 The PDO_t(n) function (Number of tagged parts over all the partitions of n with designated summands in which all parts are odd).

Original entry on oeis.org

1, 2, 4, 6, 10, 16, 24, 36, 52, 74, 104, 144, 196, 264, 352, 468, 614, 800, 1036, 1332, 1704, 2168, 2744, 3456, 4331, 5408, 6724, 8328, 10278, 12640, 15496, 18936, 23072, 28030, 33960, 41040, 49470, 59488, 71368, 85428, 102042, 121632, 144692, 171792, 203584
Offset: 1

Views

Author

Seiichi Manyama, Oct 08 2017

Keywords

Examples

			n = 4                 n = 5                     n = 6
-------------------   -----------------------   ---------------------------
3'+ 1'        -> 2    5'                -> 1    5'+ 1'                -> 2
1'+ 1 + 1 + 1 -> 1    3'+ 1'+ 1         -> 2    3'+ 3                 -> 1
1 + 1'+ 1 + 1 -> 1    3'+ 1 + 1'        -> 2    3 + 3'                -> 1
1 + 1 + 1'+ 1 -> 1    1'+ 1 + 1 + 1 + 1 -> 1    3'+ 1'+ 1 + 1         -> 2
1 + 1 + 1 + 1'-> 1    1 + 1'+ 1 + 1 + 1 -> 1    3'+ 1 + 1'+ 1         -> 2
                      1 + 1 + 1'+ 1 + 1 -> 1    3'+ 1 + 1 + 1'        -> 2
                      1 + 1 + 1 + 1'+ 1 -> 1    1'+ 1 + 1 + 1 + 1 + 1 -> 1
                      1 + 1 + 1 + 1 + 1'-> 1    1 + 1'+ 1 + 1 + 1 + 1 -> 1
                                                1 + 1 + 1'+ 1 + 1 + 1 -> 1
                                                1 + 1 + 1 + 1'+ 1 + 1 -> 1
                                                1 + 1 + 1 + 1 + 1'+ 1 -> 1
                                                1 + 1 + 1 + 1 + 1 + 1'-> 1
-------------------   -----------------------   ---------------------------
a(4)          =  6.   a(5)              = 10.   a(6)                  = 16.
		

Crossrefs

Cf. A102186 (PDO(n)), A293421.

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1-x^(2*k)) * (1-x^(3*k))^2 * (1-x^(12*k))^2 / ((1-x^k)^2 * (1-x^(6*k))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 15 2017 *)
  • Ruby
    def partition(n, min, max)
      return [[]] if n == 0
      [max, n].min.downto(min).flat_map{|i| partition(n - i, min, i).map{|rest| [i, *rest]}}
    end
    def A(n)
      partition(n, 1, n).select{|i| i.all?{|j| j.odd?}}.map{|a| a.each_with_object(Hash.new(0)){|v, o| o[v] += 1}.values}.map{|i| i.size * i.inject(:*)}.inject(:+)
    end
    def A293422(n)
      (1..n).map{|i| A(i)}
    end
    p A293422(40)

Formula

G.f.: q * Product_{k>0} ((1 - q^(2*k))*(1 - q^(3*k))^2*(1 - q^(12*k))^2)/((1 - q^k)^2*(1 - q^(6*k))).
a(n) ~ exp(sqrt(5*n)*Pi/3) / (3 * 2^(3/2) * 5^(1/4) * n^(1/4)). - Vaclav Kotesovec, Oct 15 2017