cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293423 Expansion of Product_{k>0} (1 - q^(3*k))^5/((1 - q^k)^3*(1 - q^(6*k))^2).

Original entry on oeis.org

1, 3, 9, 17, 36, 63, 118, 195, 333, 528, 852, 1305, 2020, 3012, 4518, 6583, 9624, 13761, 19698, 27702, 38952, 54000, 74784, 102357, 139882, 189297, 255690, 342497, 457824, 607617, 804656, 1058970, 1390545, 1815984, 2366268, 3068388, 3970008, 5114382, 6574266
Offset: 0

Views

Author

Seiichi Manyama, Oct 08 2017

Keywords

Crossrefs

Cf. A293421.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i>1, b(n, i-1), 0)+
          add((p-> p+[0, p[1]])(b(n-i*j, min(n-i*j, i-1))*j), j=`if`(i=1, n, 1..n/i)))
        end:
    a:= n-> (p-> 2*p[2]+p[1])(b(n$2)):
    seq(a(n), n=0..38);  # Alois P. Heinz, Jul 18 2025
  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1 - x^(3*k))^5 / ((1 - x^k)^3 * (1 - x^(6*k))^2), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 09 2017 *)

Formula

a(n) ~ 5^(1/4) * exp(sqrt(10*n)*Pi/3) / (9*2^(1/4)*n^(3/4)). - Vaclav Kotesovec, Oct 09 2017