cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293425 Primes of the form 2^a * 3^b * 5^c - 1 for positive a, b, c.

Original entry on oeis.org

29, 59, 89, 149, 179, 239, 269, 359, 449, 479, 599, 719, 809, 1439, 1499, 1619, 2399, 2699, 2879, 2999, 4049, 4799, 5399, 7499, 8999, 9719, 10799, 11519, 12149, 12959, 13499, 15359, 18749, 20249, 21599, 23039, 25919, 33749, 35999, 40499, 51839, 56249, 59999, 65609, 67499, 69119, 71999
Offset: 1

Views

Author

Muniru A Asiru, Oct 09 2017

Keywords

Comments

a(n) is congruent to 29 (mod 30).

Examples

			a(1) = 29 = 2^1 * 3^1 * 5^1 - 1.
a(2) = 59 = 2^2 * 3^1 * 5^1 - 1.
a(3) = 89 = 2^1 * 3^2 * 5^1 - 1.
a(4) = 149 = 2^1 * 3^1 * 5^2 - 1.
a(5) = 179 = 2^2 * 3^2 * 5^1 - 1.
list of (a, b, c): (1, 1, 1), (2, 1, 1), (1, 2, 1), (1, 1, 2), (2, 2, 1), (4, 1, 1), (1, 3, 1), (3, 2, 1), (1, 2, 2), (5, 1, 1), (3, 1, 2), (4, 2, 1), (1, 4, 1), (5, 2, 1), (2, 1, 3), (2, 4, 1), ...
		

Crossrefs

Programs

  • GAP
    K:=10^5+1;; # to get all terms <= K.
    A:=Filtered([1..K],IsPrime);;
    A293425:=List(Positions(List(A,i->Elements(Factors(i+1))),[2,3,5]),i->A[i]);
    
  • Maple
    N:= 10^6: # to get all terms < N
    R:= {}:
    for c from 1 to floor(log[5]((N+1)/6)) do
    for b from 1 to floor(log[3]((N+1)/2/5^c)) do
         R:= R union select(isprime, {seq(2^a*3^b*5^c-1,
                 a=1..ilog2((N+1)/(3^b*5^c)))})
    od od:
    sort(convert(R,list)); # Robert Israel, Oct 15 2017
  • Mathematica
    With[{n = 10^5}, Sort@ Select[Flatten@ Table[2^a*3^b*5^c - 1, {a, Log2@ n}, {b, Log[3, n/(2^a)]}, {c, Log[5, n/(2^a*3^b)]}], PrimeQ]] (* Michael De Vlieger, Oct 11 2017 *)
  • PARI
    lista(nn) = {forprime(p=2,nn, f = factor(p+1); if ((vecmax(f[,1]) <= 5) && (#f~==3), print1(p, ", ")););} \\ Michel Marcus, Oct 09 2017
    
  • Python
    from itertools import count, islice
    from sympy import integer_log, isprime
    def A293425_gen(): # generator of terms
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            c = x
            for i in range(1,integer_log(x,5)[0]+1):
                for j in range(1,integer_log(m:=x//5**i,3)[0]+1):
                    c -= (m//3**j).bit_length()-1
            return c
        yield from filter(isprime,(bisection(lambda k:n+f(k),n,n)-1 for n in count(1)))
    A293425_list = list(islice(A293425_gen(),30)) # Chai Wah Wu, Mar 31 2025