A293433 a(n) is the number of the proper divisors of n that are Jacobsthal numbers (A001045).
0, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 3, 1, 1, 2, 1, 2, 2, 2, 1, 2, 2, 1, 2, 1, 1, 3, 1, 1, 3, 1, 2, 2, 1, 1, 2, 2, 1, 3, 1, 2, 3, 1, 1, 2, 1, 2, 2, 1, 1, 2, 3, 1, 2, 1, 1, 3, 1, 1, 3, 1, 2, 3, 1, 1, 2, 2, 1, 2, 1, 1, 3, 1, 2, 2, 1, 2, 2, 1, 1, 3, 2, 2, 2, 2, 1, 3, 1, 1, 2, 1, 2, 2, 1, 1, 3, 2, 1, 2, 1, 1, 4
Offset: 1
Keywords
Examples
For n = 21, whose proper divisors are [1, 3, 7], both 1 and 3 are in A001045, thus a(21) = 2.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..21845
Programs
-
Mathematica
With[{s = LinearRecurrence[{1, 2}, {0, 1}, 24]}, Table[DivisorSum[n, 1 &, And[MemberQ[s, #], # != n] &], {n, 105}]] (* Michael De Vlieger, Oct 09 2017 *)
-
PARI
A147612aux(n,i) = if(!(n%2),n,A147612aux((n+i)/2,-i)); A147612(n) = 0^(A147612aux(n,1)*A147612aux(n,-1)); A293433(n) = sumdiv(n,d,(d
A147612(d)); -
Python
from sympy import divisors def A293433(n): return sum(1 for d in divisors(n,generator=True) if d
(m-3).bit_length()) # Chai Wah Wu, Apr 18 2025
Formula
a(n) = Sum_{d|n, dA147612(d).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{n>=2} 1/A001045(n) = 1.718591611927... . - Amiram Eldar, Jul 05 2025