A293453 Zumkeller numbers k such that sigma(k)/2 is a Zumkeller number.
6, 24, 28, 42, 54, 56, 60, 78, 84, 88, 96, 102, 108, 114, 120, 126, 132, 140, 150, 168, 174, 176, 186, 198, 204, 216, 220, 222, 224, 228, 240, 246, 252, 258, 260, 264, 270, 276, 280, 294, 308, 312, 330, 336, 340, 342, 348, 350, 352, 354, 366, 368, 372, 378, 380, 384, 390, 396, 402
Offset: 1
Examples
The fourth Zumkeller number is 24, since sigma(24) = A000203(24) = 60, 60/2 = 30, and the divisors of 24 can be partitioned as 1 + 2 + 3 + 4 + 8 + 12 = 6 + 24 = 30. In turn, 30 is also a Zumkeller number, as sigma(30)/2 = 72/2 = 36 and 1 + 2 + 3 + 5 + 10 + 15 = 6 + 30 = 36. Therefore 24 is in this sequence. But since 36 is not a Zumkeller number at all, 30 is not in this sequence.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Comments