A293496 Array read by antidiagonals: T(n,k) = number of chiral pairs of necklaces with n beads using a maximum of k colors.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 4, 3, 0, 0, 0, 0, 10, 15, 12, 1, 0, 0, 0, 20, 45, 72, 38, 2, 0, 0, 0, 35, 105, 252, 270, 117, 6, 0, 0, 0, 56, 210, 672, 1130, 1044, 336, 14, 0, 0, 0, 84, 378, 1512, 3535, 5270, 3795, 976, 30, 0
Offset: 1
Examples
Array begins: ========================================================== n\k | 1 2 3 4 5 6 7 8 ----+----------------------------------------------------- 1 | 0 0 0 0 0 0 0 0 ... 2 | 0 0 0 0 0 0 0 0 ... 3 | 0 0 1 4 10 20 35 56 ... 4 | 0 0 3 15 45 105 210 378 ... 5 | 0 0 12 72 252 672 1512 3024 ... 6 | 0 1 38 270 1130 3535 9156 20748 ... 7 | 0 2 117 1044 5270 19350 57627 147752 ... 8 | 0 6 336 3795 23520 102795 355656 1039626 ... 9 | 0 14 976 14060 106960 556010 2233504 7440216 ... 10 | 0 30 2724 51204 483756 3010098 14091000 53615016 ... ... For T(3,4)=4, the chiral pairs are ABC-ACB, ABD-ADB, ACD-ADC, and BCD-BDC. For T(4,3)=3, the chiral pairs are AABC-AACB, ABBC-ACBB, and ABCC-ACCB. - _Robert A. Russell_, Sep 28 2018
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275
Crossrefs
Programs
-
Mathematica
b[n_, k_] := (1/n)*DivisorSum[n, EulerPhi[#]*k^(n/#) &]; c[n_, k_] := If[EvenQ[n], (k^(n/2) + k^(n/2 + 1))/2, k^((n + 1)/2)]; T[, 1] = T[1, ] = 0; T[n_, k_] := (b[n, k] - c[n, k])/2; Table[T[n - k + 1, k], {n, 1, 11}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Oct 11 2017, translated from PARI *)
-
PARI
\\ here b(n,k) is A075195 and c(n,k) is A284855 b(n, k) = (1/n) * sumdiv(n, d, eulerphi(d)*k^(n/d)); c(n, k) = if(n % 2 == 0, (k^(n/2) + k^(n/2+1))/2, k^((n+1)/2)); T(n, k) = (b(n, k) - c(n, k)) / 2;
Formula
From Robert A. Russell, Sep 28 2018: (Start)
T(n, k) = -(k^floor((n+1)/2) + k^ceiling((n+1)/2)) / 4 + (1/2n) * Sum_{d|n} phi(d) * k^(n/d)
G.f. for column k: -(kx/4)*(kx+x+2)/(1-kx^2) - Sum_{d>0} phi(d)*log(1-kx^d)/2d. (End)
Comments