A293527 E.g.f.: exp(x/Product_{k>0} (1 - x^k)).
1, 1, 3, 19, 145, 1401, 15331, 198283, 2840769, 45744625, 807769891, 15590922051, 325339538833, 7316871562729, 175934564213955, 4508362093795771, 122558873094082561, 3522465207528093153, 106681726559176156099, 3395601487535927589235, 113287948824653903674641
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..423
- Peter Bala, Integer sequences that become periodic on reduction modulo k for all k
Programs
-
Mathematica
nmax = 25; CoefficientList[Series[E^(x/QPochhammer[x, x]), {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Oct 11 2017 *)
-
PARI
N=66; x='x+O('x^N); Vec(serlaplace(exp(x/prod(k=1, N, (1-x^k)))))
Formula
a(0) = 1 and a(n) = (n-1)! * Sum_{k=1..n} k*A000041(k-1)*a(n-k)/(n-k)! for n > 0.
Comments