A293528 E.g.f.: exp(x * Product_{k>0} (1 + x^k)).
1, 1, 3, 13, 97, 741, 7291, 81313, 1027713, 14231017, 220911571, 3730744821, 68096325793, 1339705629133, 28225576881867, 634123159354441, 15127595174135041, 381586517104288593, 10147599723510322723, 283846981316172613597, 8324822922497497733601
Offset: 0
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..431
- Peter Bala, Integer sequences that become periodic on reduction modulo k for all k
Programs
-
Mathematica
nmax = 25; CoefficientList[Series[E^(x*QPochhammer[-1, x]/2), {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Oct 11 2017 *)
-
PARI
N=66; x='x+O('x^N); Vec(serlaplace(exp(x*prod(k=1, N, (1+x^k)))))
Formula
a(0) = 1 and a(n) = (n-1)! * Sum_{k=1..n} k*A000009(k-1)*a(n-k)/(n-k)! for n > 0.
Comments