cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293543 a(n) = ceiling(Fibonacci(n)/3).

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 3, 5, 7, 12, 19, 30, 48, 78, 126, 204, 329, 533, 862, 1394, 2255, 3649, 5904, 9553, 15456, 25009, 40465, 65473, 105937, 171410, 277347, 448757, 726103, 1174860, 1900963, 3075822, 4976784, 8052606, 13029390, 21081996, 34111385, 55193381
Offset: 0

Views

Author

Clark Kimberling, Oct 12 2017

Keywords

Comments

a(n) is the least integer k such that k/Fibonacci(n) > 1/3.

Crossrefs

Cf. A000045.
Cf. A004696 (floor(Fibonacci(n)/3)).
Cf. A293544 (round(Fibonacci(n)/3)).

Programs

  • Mathematica
    LinearRecurrence[{1, 1, 0, 0, 0, 0, 0, 1, -1, -1}, {0, 1, 1, 1, 1, 2, 3, 5, 7, 12}, 50] (* Harvey P. Dale, Oct 18 2018 *)
    Table[Ceiling[Fibonacci[n]/3], {n, 0, 20}] (* Eric W. Weisstein, Feb 07 2025 *)
    Ceiling[Fibonacci[Range[0, 20]]/3] (* Eric W. Weisstein, Feb 07 2025 *)
    CoefficientList[Series[-x (-1 + x^2 + x^3 + x^7 + x^8)/((-1 + x) (1 + x) (1 + x^2) (-1 + x + x^2) (1 + x^4)), {x, 0, 20}], x] (* Eric W. Weisstein, Feb 07 2025 *)
    Table[(9 - 6 Cos[n Pi/2] + 8 Fibonacci[n] - (-1)^n (3 + 4 Sin[n Pi/4] (Cos[n Pi/2] + Sqrt[2] Sin[n Pi/2])))/24, {n, 0, 20}] (* Eric W. Weisstein, Feb 07 2025 *)

Formula

G.f.: -((x (-1 + x^2 + x^3 + x^7 + x^8))/((-1 + x) (1 + x) (1 + x^2) (-1 + x + x^2) (1 + x^4))).
a(n) = a(n-1) + a(n-2) + a(n-8) - a(n-9) - a(n-10) for n >= 11.