cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293548 Expansion of Product_{k>=2} 1/(1 - x^k)^omega(k), where omega(k) is the number of distinct primes dividing k (A001221).

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 5, 4, 8, 9, 15, 16, 28, 29, 46, 54, 77, 90, 131, 150, 211, 251, 337, 401, 540, 637, 839, 1006, 1296, 1551, 1995, 2373, 3013, 3610, 4523, 5410, 6754, 8045, 9965, 11897, 14614, 17410, 21313, 25316, 30816, 36615, 44307, 52539, 63387, 74975, 90078
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 11 2017

Keywords

Comments

Euler transform of A001221.

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[1/(1 - x^k)^PrimeNu[k], {k, 2, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d PrimeNu[d], {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 50}]

Formula

G.f.: Product_{k>=2} 1/(1 - x^k)^b(k), where b(k) = [x^k] Sum_{j>=1} x^prime(j)/(1 - x^prime(j)).
a(0) = 1; a(n) = (1/n)*Sum_{k=1..n} a(n-k)*b(k), b(k) = Sum_{d|k} d*omega(d).