A293549 Expansion of Product_{k>=2} 1/(1 - x^k)^bigomega(k), where bigomega(k) is the number of prime divisors of k counted with multiplicity (A001222).
1, 0, 1, 1, 3, 2, 6, 5, 13, 12, 23, 24, 47, 47, 82, 92, 152, 167, 265, 301, 462, 532, 779, 914, 1324, 1548, 2174, 2590, 3573, 4250, 5771, 6904, 9254, 11092, 14638, 17606, 23043, 27680, 35820, 43155, 55383, 66642, 84850, 102141, 129171, 155394, 195134, 234679, 293184, 352096, 437359
Offset: 0
Keywords
Links
- N. J. A. Sloane, Transforms
Programs
-
Mathematica
nmax = 50; CoefficientList[Series[Product[1/(1 - x^k)^PrimeOmega[k], {k, 2, nmax}], {x, 0, nmax}], x] a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d PrimeOmega[d], {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 50}]
Formula
G.f.: Product_{k>=2} 1/(1 - x^k)^b(k), where b(k) = [x^k] Sum_{p prime, j>=1} x^(p^j)/(1 - x^(p^j)).
a(0) = 1; a(n) = (1/n)*Sum_{k=1..n} a(n-k)*b(k), b(k) = Sum_{d|k} d*bigomega(d).
Comments