cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A293549 Expansion of Product_{k>=2} 1/(1 - x^k)^bigomega(k), where bigomega(k) is the number of prime divisors of k counted with multiplicity (A001222).

Original entry on oeis.org

1, 0, 1, 1, 3, 2, 6, 5, 13, 12, 23, 24, 47, 47, 82, 92, 152, 167, 265, 301, 462, 532, 779, 914, 1324, 1548, 2174, 2590, 3573, 4250, 5771, 6904, 9254, 11092, 14638, 17606, 23043, 27680, 35820, 43155, 55383, 66642, 84850, 102141, 129171, 155394, 195134, 234679, 293184, 352096, 437359
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 11 2017

Keywords

Comments

Euler transform of A001222.
Comment from R. J. Mathar, Sep 10 2021 (Start):
The triangle of the multiset transformation of A001222 looks as follows:
1 ;1
0 0 ;0
0 1 0 ;1
0 1 0 0 ;1
0 2 1 0 0 ;3
0 1 1 0 0 0 ;2
0 2 3 1 0 0 0 ;6
0 1 3 1 0 0 0 0 ;5
0 3 6 3 1 0 0 0 0 ;13
0 2 5 4 1 0 0 0 0 0 ;12
0 2 9 8 3 1 0 0 0 0 0 ;23
0 1 9 9 4 1 0 0 0 0 0 0 ;24
0 3 14 17 9 3 1 0 0 0 0 0 0 ;47
0 1 12 18 11 4 1 0 0 0 0 0 0 0 ;47
0 2 17 29 21 9 3 1 0 0 0 0 0 0 0 ;82
...
The second column is A001222, the row sums (after the semicolons) are this sequence. (End)

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[1/(1 - x^k)^PrimeOmega[k], {k, 2, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d PrimeOmega[d], {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 50}]

Formula

G.f.: Product_{k>=2} 1/(1 - x^k)^b(k), where b(k) = [x^k] Sum_{p prime, j>=1} x^(p^j)/(1 - x^(p^j)).
a(0) = 1; a(n) = (1/n)*Sum_{k=1..n} a(n-k)*b(k), b(k) = Sum_{d|k} d*bigomega(d).

A320778 Inverse Euler transform of the Euler totient function phi = A000010.

Original entry on oeis.org

1, 1, 0, 1, 0, 2, -3, 4, -4, 4, -9, 14, -19, 30, -42, 50, -76, 128, -194, 286, -412, 598, -909, 1386, -2100, 3178, -4763, 7122, -10758, 16414, -25061, 38056, -57643, 87568, -133436, 203618, -311128, 475536, -726355, 1109718, -1697766, 2601166, -3987903, 6114666
Offset: 0

Views

Author

Gus Wiseman, Oct 22 2018

Keywords

Comments

The Euler transform of a sequence q is the sequence of coefficients of x^n, n > 0, in the expansion of Product_{n > 0} 1/(1 - x^n)^q(n). The constant term 1 is sometimes taken to be the zeroth part of the Euler transform.

Crossrefs

Number theoretical functions: A000005, A000010, A000203, A001055, A001221, A001222, A008683, A010054.
Inverse Euler transforms: A059966, A320767, A320776, A320777, A320779, A320780, A320781, A320782.

Programs

  • Maple
    # The function EulerInvTransform is defined in A358451.
    a := EulerInvTransform(n -> ifelse(n=0, 1, NumberTheory:-Totient(n))):
    seq(a(n), n = 0..43); # Peter Luschny, Nov 21 2022
  • Mathematica
    EulerInvTransform[{}]={};EulerInvTransform[seq_]:=Module[{final={}},For[i=1,i<=Length[seq],i++,AppendTo[final,i*seq[[i]]-Sum[final[[d]]*seq[[i-d]],{d,i-1}]]];
    Table[Sum[MoebiusMu[i/d]*final[[d]],{d,Divisors[i]}]/i,{i,Length[seq]}]];
    EulerInvTransform[Array[EulerPhi,30]]

A320776 Inverse Euler transform of the number of prime factors (with multiplicity) function A001222.

Original entry on oeis.org

1, 0, 1, 1, 1, 0, -1, -1, 0, 1, 0, -1, -1, -1, 1, 3, 3, -2, -5, -4, 0, 7, 7, 0, -9, -10, 2, 15, 15, -3, -27, -30, 3, 46, 51, 1, -71, -91, -7, 117, 157, 23, -194, -265, -57, 318, 465, 111, -536, -821, -230, 893, 1456, 505, -1485, -2559, -1036, 2433, 4483, 2022
Offset: 0

Views

Author

Gus Wiseman, Oct 22 2018

Keywords

Comments

The Euler transform of a sequence q is the sequence of coefficients of x^n, n > 0, in the expansion of Product_{n > 0} 1/(1 - x^n)^q(n). The constant term 1 is sometimes taken to be the zeroth part of the Euler transform.

Crossrefs

Number theoretical functions: A000005, A000010, A000203, A001055, A001221, A001222, A008683, A010054.
Inverse Euler transforms: A059966, A320767, A320777, A320778, A320779, A320780, A320781, A320782.

Programs

  • Maple
    # The function EulerInvTransform is defined in A358451.
    a := EulerInvTransform(n -> ifelse(n=0, 1, NumberTheory:-NumberOfPrimeFactors(n))):
    seq(a(n), n = 0..59); # Peter Luschny, Nov 21 2022
  • Mathematica
    EulerInvTransform[{}]={};EulerInvTransform[seq_]:=Module[{final={}},For[i=1,i<=Length[seq],i++,AppendTo[final,i*seq[[i]]-Sum[final[[d]]*seq[[i-d]],{d,i-1}]]];
    Table[Sum[MoebiusMu[i/d]*final[[d]],{d,Divisors[i]}]/i,{i,Length[seq]}]];
    EulerInvTransform[Array[PrimeOmega,100]]

A320777 Inverse Euler transform of the number of distinct prime factors (without multiplicity) function A001221.

Original entry on oeis.org

1, 0, 1, 1, 0, 0, 0, 0, -1, -1, 1, 1, 0, -1, 0, 1, -1, -2, 1, 3, 1, -2, -2, 1, 0, -4, 0, 6, 6, -4, -8, 1, 4, -4, -5, 10, 16, -4, -25, -7, 17, 5, -16, 2, 42, 12, -58, -48, 40, 59, -27, -44, 67, 86, -103, -187, 36, 236, 45, -213, -5, 284, -23, -526, -188, 663, 520
Offset: 0

Views

Author

Gus Wiseman, Oct 22 2018

Keywords

Comments

The Euler transform of a sequence q is the sequence of coefficients of x^n, n > 0, in the expansion of Product_{n > 0} 1/(1 - x^n)^q(n). The constant term 1 is sometimes taken to be the zeroth part of the Euler transform.

Crossrefs

Number theoretical functions: A000005, A000010, A000203, A001055, A001221, A001222, A008683, A010054.
Inverse Euler transforms: A059966, A320767, A320776, A320778, A320779, A320780, A320781, A320782.

Programs

  • Mathematica
    EulerInvTransform[{}]={};EulerInvTransform[seq_]:=Module[{final={}},For[i=1,i<=Length[seq],i++,AppendTo[final,i*seq[[i]]-Sum[final[[d]]*seq[[i-d]],{d,i-1}]]];
    Table[Sum[MoebiusMu[i/d]*final[[d]],{d,Divisors[i]}]/i,{i,Length[seq]}]];
    EulerInvTransform[Array[PrimeNu,100]]

A320782 Inverse Euler transform of the unsigned Moebius function A008966.

Original entry on oeis.org

1, 1, 0, 0, -1, 1, 0, 0, -1, 1, 0, 0, -2, 3, 0, -1, -3, 6, -3, 0, -6, 12, -6, 0, -9, 23, -17, 0, -15, 47, -40, 8, -24, 91, -101, 34, -46, 181, -230, 109, -92, 354, -534, 323, -208, 690, -1177, 883, -520, 1365, -2603, 2297, -1377, 2760, -5641, 5789, -3721, 5741
Offset: 0

Views

Author

Gus Wiseman, Oct 22 2018

Keywords

Comments

The Euler transform of a sequence q is the sequence of coefficients of x^n, n > 0, in the expansion of Product_{n > 0} 1/(1 - x^n)^q(n). The constant term 1 is sometimes taken to be the zeroth part of the Euler transform.

Crossrefs

Number theoretical functions: A000005, A000010, A000203, A001055, A001221, A001222, A008683, A010054.
Inverse Euler transforms: A059966, A320767, A320776, A320777, A320778, A320779, A320780, A320781.

Programs

  • Mathematica
    EulerInvTransform[{}]={};EulerInvTransform[seq_]:=Module[{final={}},For[i=1,i<=Length[seq],i++,AppendTo[final,i*seq[[i]]-Sum[final[[d]]*seq[[i-d]],{d,i-1}]]];
    Table[Sum[MoebiusMu[i/d]*final[[d]],{d,Divisors[i]}]/i,{i,Length[seq]}]];
    EulerInvTransform[Table[Abs[MoebiusMu[n]],{n,30}]]

A328260 a(n) = n * omega(n).

Original entry on oeis.org

0, 2, 3, 4, 5, 12, 7, 8, 9, 20, 11, 24, 13, 28, 30, 16, 17, 36, 19, 40, 42, 44, 23, 48, 25, 52, 27, 56, 29, 90, 31, 32, 66, 68, 70, 72, 37, 76, 78, 80, 41, 126, 43, 88, 90, 92, 47, 96, 49, 100, 102, 104, 53, 108, 110, 112, 114, 116, 59, 180, 61, 124, 126, 64, 130, 198, 67, 136, 138, 210
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 09 2019

Keywords

Crossrefs

Programs

  • Magma
    [0] cat [n*(#PrimeDivisors(n)):n in [2..70]]; // Marius A. Burtea, Oct 10 2019
    
  • Mathematica
    Table[n PrimeNu[n], {n, 1, 70}]
    nmax = 70; CoefficientList[Series[Sum[Prime[k] x^Prime[k]/(1 - x^Prime[k])^2, {k, 1, nmax}], {x, 0, nmax}], x] // Rest
  • PARI
    a(n)=n*omega(n) \\ Charles R Greathouse IV, Mar 16 2022

Formula

G.f.: Sum_{k>=1} prime(k) * x^prime(k) / (1 - x^prime(k))^2.
a(n) = bigomega(rad(n)^n).
a(n) = Sum_{d|n} A061397(n/d) * d.
Define f(x) = #{n <= x: a(n) <= x}. Gabdullin & Iudelevich show that f(x) ~ x/log log x. - Charles R Greathouse IV, Mar 16 2022

A300671 Expansion of 1/(1 - Sum_{k>=1} x^prime(k)/(1 - x^prime(k))).

Original entry on oeis.org

1, 0, 1, 1, 2, 3, 6, 8, 15, 23, 40, 63, 108, 172, 290, 471, 782, 1280, 2119, 3474, 5741, 9432, 15557, 25590, 42180, 69413, 114371, 188276, 310136, 510637, 841045, 1384883, 2280831, 3755862, 6185457, 10185941, 16774695, 27624215, 45492412, 74916559, 123374127, 203172520, 334587577
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 11 2018

Keywords

Comments

Invert transform of A001221.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1,
          add(a(n-i)*nops(ifactors(i)[2]), i=1..n))
        end:
    seq(a(n), n=0..42);  # Alois P. Heinz, Feb 11 2021
  • Mathematica
    nmax = 42; CoefficientList[Series[1/(1 - Sum[x^Prime[k]/(1 - x^Prime[k]), {k, 1, nmax}]), {x, 0, nmax}], x]
    nmax = 42; CoefficientList[Series[1/(1 - Sum[PrimeNu[k] x^k, {k, 2, nmax}]), {x, 0, nmax}], x]
    a[0] = 1; a[n_] := a[n] = Sum[PrimeNu[k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 42}]

Formula

G.f.: 1/(1 - Sum_{k>=2} A001221(k)*x^k).

A319130 Expansion of Product_{k>=1} 1/(1 - x^k)^(2^omega(k)), where omega(k) = number of distinct primes dividing k (A001221).

Original entry on oeis.org

1, 1, 3, 5, 10, 16, 31, 47, 81, 125, 203, 305, 482, 710, 1082, 1582, 2348, 3380, 4933, 7007, 10048, 14136, 19972, 27796, 38822, 53510, 73903, 101033, 138165, 187351, 254055, 341923, 459956, 614904, 821162, 1090740, 1447109, 1910665, 2519325, 3308019, 4336956
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 11 2018

Keywords

Comments

Euler transform of A034444.

Crossrefs

Programs

  • Maple
    with(numtheory): a:=series(mul(1/(1-x^k)^(2^nops(factorset(k))),k=1..50),x=0,41): seq(coeff(a,x,n),n=0..40); # Paolo P. Lava, Apr 02 2019
  • Mathematica
    nmax = 40; CoefficientList[Series[Product[1/(1 - x^k)^(2^PrimeNu[k]), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 40; CoefficientList[Series[Exp[Sum[DivisorSum[k, # &, SquareFreeQ[#] &] x^k/(k (1 - x^k)), {k, 1, nmax}]], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d 2^PrimeNu[d], {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 40}]

Formula

G.f.: Product_{k>=1} 1/(1 - x^k)^A034444(k).
G.f.: exp(Sum_{k>=1} A048250(k)*x^k/(k*(1 - x^k))).
G.f.: exp(Sum_{k>=1} Sum_{j>=1} mu(j)^2*x^(j*k)/(k*(1 - x^(j*k)))), where mu = Möbius function (A008683).
log(a(n)) ~ sqrt(2*n*log(n)). - Vaclav Kotesovec, Sep 13 2018

A320784 Negated inverse Euler transform of {-1 if n is a triangular number else 0, n > 0} = -A010054.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 2, 3, 3, 5, 8, 11, 14, 23, 31, 47, 68, 101, 144, 217, 315, 471, 693, 1035, 1528, 2287, 3397, 5085, 7587, 11377, 17017, 25565, 38349, 57681, 86724, 130645, 196778, 296853, 447864, 676479, 1022082, 1545685, 2338299, 3540111, 5361606, 8125551
Offset: 0

Views

Author

Gus Wiseman, Oct 22 2018

Keywords

Comments

The Euler transform of a sequence q is the sequence of coefficients of x^n, n > 0, in the expansion of Product_{n > 0} 1/(1 - x^n)^q(n). The constant term 1 is sometimes taken to be the zeroth part of the Euler transform.

Crossrefs

Programs

  • Mathematica
    EulerInvTransform[{}]={};EulerInvTransform[seq_]:=Module[{final={}},For[i=1,i<=Length[seq],i++,AppendTo[final,i*seq[[i]]-Sum[final[[d]]*seq[[i-d]],{d,i-1}]]];
    Table[Sum[MoebiusMu[i/d]*final[[d]],{d,Divisors[i]}]/i,{i,Length[seq]}]];
    -EulerInvTransform[-Table[SquaresR[1,8*n+1]/2,{n,30}]]

A320783 Inverse Euler transform of (-1)^(n - 1).

Original entry on oeis.org

1, 1, -2, 2, -3, 6, -11, 18, -30, 56, -105, 186, -335, 630, -1179, 2182, -4080, 7710, -14588, 27594, -52377, 99858, -190743, 364722, -698870, 1342176, -2581425, 4971008, -9586395, 18512790, -35792449, 69273666, -134215680, 260300986, -505294125, 981706806
Offset: 0

Views

Author

Gus Wiseman, Oct 22 2018

Keywords

Comments

After a(1) and a(2), same as A038063.
The Euler transform of a sequence q is the sequence of coefficients of x^n, n > 0, in the expansion of Product_{n > 0} 1/(1 - x^n)^q(n). The constant term 1 is sometimes taken to be the zeroth part of the Euler transform.

Crossrefs

Programs

  • Mathematica
    EulerInvTransform[{}]={};EulerInvTransform[seq_]:=Module[{final={}},For[i=1,i<=Length[seq],i++,AppendTo[final,i*seq[[i]]-Sum[final[[d]]*seq[[i-d]],{d,i-1}]]];
    Table[Sum[MoebiusMu[i/d]*final[[d]],{d,Divisors[i]}]/i,{i,Length[seq]}]];
    EulerInvTransform[Array[(-1)^(#-1)&,30]]
Showing 1-10 of 13 results. Next