cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A329354 a(n) = Sum_{d|n} d*omega(d).

Original entry on oeis.org

0, 2, 3, 6, 5, 17, 7, 14, 12, 27, 11, 45, 13, 37, 38, 30, 17, 62, 19, 71, 52, 57, 23, 101, 30, 67, 39, 97, 29, 162, 31, 62, 80, 87, 82, 162, 37, 97, 94, 159, 41, 220, 43, 149, 137, 117, 47, 213, 56, 152, 122, 175, 53, 197, 126, 217, 136, 147, 59, 410, 61, 157, 187, 126, 148, 336, 67, 227, 164, 342, 71, 362, 73, 187, 213, 253, 172, 394, 79
Offset: 1

Views

Author

Antti Karttunen, Nov 15 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[d*PrimeNu[d], {d, Divisors[n]}], {n, 1, 100}] (* Vaclav Kotesovec, Aug 18 2021 *)
  • PARI
    A329354(n) = sumdiv(n,d,omega(d)*d);

Formula

a(n) = Sum_{d|n} d*A001221(d).
a(n) = A180253(n) - A323599(n).
a(n) = A328260(n) + A329375(n).
a(n) = Sum_{d|n} (n/d) * sopf(d). - Wesley Ivan Hurt, May 24 2021
Dirichlet g.f.: primezeta(s-1) * zeta(s-1) * zeta(s). - Ilya Gutkovskiy, Aug 18 2021
Conjecture: Sum_{k=1..n} a(k) ~ Pi^2 * n^2 * (log(log(n)) + A077761) / 12. - Vaclav Kotesovec, Mar 03 2023

A180253 Call two divisors of n adjacent if the larger is a prime times the smaller. a(n) is the sum of elements of all pairs of adjacent divisors of n.

Original entry on oeis.org

0, 3, 4, 9, 6, 24, 8, 21, 16, 36, 12, 64, 14, 48, 48, 45, 18, 87, 20, 96, 64, 72, 24, 144, 36, 84, 52, 128, 30, 216, 32, 93, 96, 108, 96, 229, 38, 120, 112, 216, 42, 288, 44, 192, 174, 144, 48, 304, 64, 201, 144, 224, 54, 276, 144, 288, 160, 180, 60, 552, 62, 192, 232, 189
Offset: 1

Views

Author

Vladimir Shevelev, Aug 20 2010

Keywords

Comments

The pairs of adjacent divisors of n are counted in A062799(n).
For each divisor d of n we can check in how many pairs it occurs. For each prime divisor p of n, see the exponent of p in the factorization of d. If it's positive (p|d) then it occurs once more. If d*p doesn't divide n, add one to the frequency as well. - David A. Corneth, Dec 17 2018

Examples

			a(4) = (1 + 2) + (2 + 4) = 9.
a(120) = a(3*5*2^3) = 4*6*(3*8 + 4*4 + 4*2 + 3) = 1224.
		

Crossrefs

Programs

  • Mathematica
    divisorSumPrime[n_] := DivisorSum[n, 1+1/# &, PrimeQ[#] &]; a[n_] := DivisorSum[n, #*divisorSumPrime[#]& ]; Array[a, 70] (* Amiram Eldar, Dec 17 2018 *)
  • PARI
    a(n) = sumdiv(n, d, d*sumdiv(d, p, isprime(p)*(1+1/p))); \\ Michel Marcus, Dec 17 2018
    
  • PARI
    a(n) = my(f = factor(n), res = 0); fordiv(n, d, for(i = 1, #f~, v = valuation(d, f[i, 1]); res+=(d * ((v > 0) + (v < f[i, 2]))))); res \\ David A. Corneth, Dec 17 2018

Formula

a(n) = Sum_{d|n} d*Sum_{p|d} (1 + 1/p) where p is restricted to primes.
a(n) = Sum_{d|n} A069359(d) + Sum_{d|n} d*A001221(d).
a(n) = A323599(n) + A329354(n) = A323599(n) + A328260(n) + A329375(n). - Antti Karttunen, Nov 15 2019
a(p^k) = (p^k - 1)*(p + 1)/(p - 1).
a(p_1*p_2*...*p_m) = m*(p_1 + 1)*(p_2 + 1)*...*(p_m + 1).
a(p*q^k) = (p + 1)*(2*q^k + 3*q^(k - 1) + 3*q^(k - 2) + ... + 3*q + 2).
a(p*q*r^k) = (p + 1)*(q + 1)*(3*r^k + 4*r^(k - 1) + 4*r^(k - 2) + ... + 4*r + 3) and similar for a larger number of distinct prime factors of n.

Extensions

Definition rephrased, entries checked, one example added. - R. J. Mathar, Oct 25 2010

A347104 Dirichlet g.f.: primezeta(s-1) * zeta(s-1) / zeta(s).

Original entry on oeis.org

0, 2, 3, 2, 5, 7, 7, 4, 6, 13, 11, 10, 13, 19, 22, 8, 17, 18, 19, 18, 32, 31, 23, 20, 20, 37, 18, 26, 29, 38, 31, 16, 52, 49, 58, 24, 37, 55, 62, 36, 41, 56, 43, 42, 54, 67, 47, 40, 42, 60, 82, 50, 53, 54, 94, 52, 92, 85, 59, 60, 61, 91, 78, 32, 112, 92, 67, 66, 112, 106, 71, 48, 73, 109, 100
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 18 2021

Keywords

Comments

a(n) is the sum of the prime terms in row n of A050873.
Moebius transform of A328260.

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, MoebiusMu[n/#] # PrimeNu[#] &], {n, 1, 75}]
    Table[DivisorSum[n, # EulerPhi[n/#] &, PrimeQ[#] &], {n, 1, 75}]
    Table[Sum[Boole[PrimeQ[GCD[n, k]]] GCD[n, k], {k, 1, n}], {n, 1, 75}]
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d)*d*omega(d)); \\ Michel Marcus, Aug 18 2021

Formula

a(n) = Sum_{d|n} mu(n/d) * d * omega(d).
a(n) = Sum_{p|n, p prime} p * phi(n/p).
a(n) = Sum_{k=1..n} A010051(gcd(n,k)) * gcd(n,k).

A329375 a(n) = Sum_{d|n, d

Original entry on oeis.org

0, 0, 0, 2, 0, 5, 0, 6, 3, 7, 0, 21, 0, 9, 8, 14, 0, 26, 0, 31, 10, 13, 0, 53, 5, 15, 12, 41, 0, 72, 0, 30, 14, 19, 12, 90, 0, 21, 16, 79, 0, 94, 0, 61, 47, 25, 0, 117, 7, 52, 20, 71, 0, 89, 16, 105, 22, 31, 0, 230, 0, 33, 61, 62, 18, 138, 0, 91, 26, 132, 0, 218, 0, 39, 63, 101, 18, 160, 0, 175, 39, 43, 0, 304, 22, 45, 32, 157, 0, 297, 20
Offset: 1

Views

Author

Antti Karttunen, Nov 15 2019

Keywords

Crossrefs

Programs

Formula

a(n) = Sum_{d|n, dA001221(d).
a(n) = A329354(n) - A328260(n).

A067878 Numbers k such that sigma(k) = phi(k*omega(k)-1).

Original entry on oeis.org

1, 10, 33, 46, 65, 77, 123, 136, 221, 371, 385, 423, 513, 532, 545, 572, 660, 702, 753, 1248, 1566, 1643, 1720, 2033, 2635, 3243, 4533, 4798, 5177, 5346, 5495, 5605, 6460, 7463, 7565, 7683, 7739, 8201, 9342, 9741, 10780, 10792, 11679, 11880, 12256
Offset: 1

Views

Author

Benoit Cloitre, Mar 02 2002

Keywords

Crossrefs

Cf. A000010 (phi), A000203 (sigma), A001221 (omega), A328260.

Programs

  • Mathematica
    Select[Range[13000],DivisorSigma[1,#]==EulerPhi[#*PrimeNu[#]-1]&] (* Harvey P. Dale, Feb 02 2015 *)
  • PARI
    isok(k) = {my(f = factor(k)); sigma(f) == eulerphi(k * omega(f) - 1);} \\ Amiram Eldar, Apr 25 2025
Showing 1-5 of 5 results.