cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A369779 a(n) = n * Sum_{p|n, p prime} phi(n/p) / p.

Original entry on oeis.org

0, 1, 1, 2, 1, 8, 1, 8, 6, 22, 1, 20, 1, 44, 26, 32, 1, 66, 1, 48, 48, 112, 1, 80, 20, 158, 54, 92, 1, 172, 1, 128, 116, 274, 62, 156, 1, 344, 162, 192, 1, 348, 1, 228, 174, 508, 1, 320, 42, 540, 278, 320, 1, 594, 130, 368, 348, 814, 1, 448, 1, 932, 306, 512, 176
Offset: 1

Views

Author

Wesley Ivan Hurt, Jan 31 2024

Keywords

Comments

Dirichlet convolution of A010051(n) and A002618(n). - Wesley Ivan Hurt, Jul 10 2025

Crossrefs

Programs

  • Mathematica
    Table[n*DivisorSum[n, EulerPhi[n/#]/# &, PrimeQ[#] &], {n, 100}]
  • PARI
    A369779(n) = if(1==n, 0, my(f=factor(n)); n*sum(i=1, #f~, (eulerphi(n/f[i, 1])/f[i,1]))); \\ Antti Karttunen, Jan 23 2025

Formula

From Wesley Ivan Hurt, Jul 10 2025: (Start)
a(n) = Sum_{d|n} A010051(d) * A002618(n/d).
a(p^k) = ceiling(p^(2k-2)-p^(2k-3)) for p prime and k>=1. (End)

A369687 a(n) = Sum_{p|n, p prime} p^phi(n/p).

Original entry on oeis.org

0, 2, 3, 2, 5, 7, 7, 4, 9, 21, 11, 13, 13, 71, 106, 16, 17, 73, 19, 41, 778, 1035, 23, 97, 625, 4109, 729, 113, 29, 362, 31, 256, 59170, 65553, 18026, 145, 37, 262163, 531610, 881, 41, 4874, 43, 1145, 22186, 4194327, 47, 6817, 117649, 1049201, 43047010, 4265, 53, 262873, 9780266, 6497
Offset: 1

Views

Author

Wesley Ivan Hurt, Jan 28 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, #^EulerPhi[n/#] &, PrimeQ[#] &], {n, 60}]
  • Python
    from sympy import totient, primefactors
    def A369687(n): return sum(p**totient(n//p) for p in primefactors(n)) # Chai Wah Wu, Jan 28 2024

Formula

a(p^k) = p^((p-1)*p^(k-2)+floor(1/k)/p) for p prime and k>=1. - Wesley Ivan Hurt, Jul 16 2025

A369782 a(n) = Sum_{p|n, p prime} n^phi(n/p).

Original entry on oeis.org

0, 2, 3, 4, 5, 42, 7, 64, 81, 10010, 11, 288, 13, 7529550, 50850, 65536, 17, 34012548, 19, 160400, 85766562, 26559922791446, 23, 663552, 390625, 95428956661682202, 387420489, 481891088, 29, 656100810900, 31, 1099511627776, 1531578985265538, 3189059870763703892770850
Offset: 1

Views

Author

Wesley Ivan Hurt, Jan 31 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, n^EulerPhi[n/#] &, PrimeQ[#] &], {n, 40}]

Formula

a(p^k) = p^(k*(p-1)*p^(k-2)+floor(1/k)/p) for p prime and k>=1. - Wesley Ivan Hurt, Jul 16 2025
Showing 1-3 of 3 results.