cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A180253 Call two divisors of n adjacent if the larger is a prime times the smaller. a(n) is the sum of elements of all pairs of adjacent divisors of n.

Original entry on oeis.org

0, 3, 4, 9, 6, 24, 8, 21, 16, 36, 12, 64, 14, 48, 48, 45, 18, 87, 20, 96, 64, 72, 24, 144, 36, 84, 52, 128, 30, 216, 32, 93, 96, 108, 96, 229, 38, 120, 112, 216, 42, 288, 44, 192, 174, 144, 48, 304, 64, 201, 144, 224, 54, 276, 144, 288, 160, 180, 60, 552, 62, 192, 232, 189
Offset: 1

Views

Author

Vladimir Shevelev, Aug 20 2010

Keywords

Comments

The pairs of adjacent divisors of n are counted in A062799(n).
For each divisor d of n we can check in how many pairs it occurs. For each prime divisor p of n, see the exponent of p in the factorization of d. If it's positive (p|d) then it occurs once more. If d*p doesn't divide n, add one to the frequency as well. - David A. Corneth, Dec 17 2018

Examples

			a(4) = (1 + 2) + (2 + 4) = 9.
a(120) = a(3*5*2^3) = 4*6*(3*8 + 4*4 + 4*2 + 3) = 1224.
		

Crossrefs

Programs

  • Mathematica
    divisorSumPrime[n_] := DivisorSum[n, 1+1/# &, PrimeQ[#] &]; a[n_] := DivisorSum[n, #*divisorSumPrime[#]& ]; Array[a, 70] (* Amiram Eldar, Dec 17 2018 *)
  • PARI
    a(n) = sumdiv(n, d, d*sumdiv(d, p, isprime(p)*(1+1/p))); \\ Michel Marcus, Dec 17 2018
    
  • PARI
    a(n) = my(f = factor(n), res = 0); fordiv(n, d, for(i = 1, #f~, v = valuation(d, f[i, 1]); res+=(d * ((v > 0) + (v < f[i, 2]))))); res \\ David A. Corneth, Dec 17 2018

Formula

a(n) = Sum_{d|n} d*Sum_{p|d} (1 + 1/p) where p is restricted to primes.
a(n) = Sum_{d|n} A069359(d) + Sum_{d|n} d*A001221(d).
a(n) = A323599(n) + A329354(n) = A323599(n) + A328260(n) + A329375(n). - Antti Karttunen, Nov 15 2019
a(p^k) = (p^k - 1)*(p + 1)/(p - 1).
a(p_1*p_2*...*p_m) = m*(p_1 + 1)*(p_2 + 1)*...*(p_m + 1).
a(p*q^k) = (p + 1)*(2*q^k + 3*q^(k - 1) + 3*q^(k - 2) + ... + 3*q + 2).
a(p*q*r^k) = (p + 1)*(q + 1)*(3*r^k + 4*r^(k - 1) + 4*r^(k - 2) + ... + 4*r + 3) and similar for a larger number of distinct prime factors of n.

Extensions

Definition rephrased, entries checked, one example added. - R. J. Mathar, Oct 25 2010

A347104 Dirichlet g.f.: primezeta(s-1) * zeta(s-1) / zeta(s).

Original entry on oeis.org

0, 2, 3, 2, 5, 7, 7, 4, 6, 13, 11, 10, 13, 19, 22, 8, 17, 18, 19, 18, 32, 31, 23, 20, 20, 37, 18, 26, 29, 38, 31, 16, 52, 49, 58, 24, 37, 55, 62, 36, 41, 56, 43, 42, 54, 67, 47, 40, 42, 60, 82, 50, 53, 54, 94, 52, 92, 85, 59, 60, 61, 91, 78, 32, 112, 92, 67, 66, 112, 106, 71, 48, 73, 109, 100
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 18 2021

Keywords

Comments

a(n) is the sum of the prime terms in row n of A050873.
Moebius transform of A328260.

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, MoebiusMu[n/#] # PrimeNu[#] &], {n, 1, 75}]
    Table[DivisorSum[n, # EulerPhi[n/#] &, PrimeQ[#] &], {n, 1, 75}]
    Table[Sum[Boole[PrimeQ[GCD[n, k]]] GCD[n, k], {k, 1, n}], {n, 1, 75}]
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d)*d*omega(d)); \\ Michel Marcus, Aug 18 2021

Formula

a(n) = Sum_{d|n} mu(n/d) * d * omega(d).
a(n) = Sum_{p|n, p prime} p * phi(n/p).
a(n) = Sum_{k=1..n} A010051(gcd(n,k)) * gcd(n,k).

A329375 a(n) = Sum_{d|n, d

Original entry on oeis.org

0, 0, 0, 2, 0, 5, 0, 6, 3, 7, 0, 21, 0, 9, 8, 14, 0, 26, 0, 31, 10, 13, 0, 53, 5, 15, 12, 41, 0, 72, 0, 30, 14, 19, 12, 90, 0, 21, 16, 79, 0, 94, 0, 61, 47, 25, 0, 117, 7, 52, 20, 71, 0, 89, 16, 105, 22, 31, 0, 230, 0, 33, 61, 62, 18, 138, 0, 91, 26, 132, 0, 218, 0, 39, 63, 101, 18, 160, 0, 175, 39, 43, 0, 304, 22, 45, 32, 157, 0, 297, 20
Offset: 1

Views

Author

Antti Karttunen, Nov 15 2019

Keywords

Crossrefs

Programs

Formula

a(n) = Sum_{d|n, dA001221(d).
a(n) = A329354(n) - A328260(n).

A369903 a(n) = Sum_{p|n, p prime} n^sigma(n/p).

Original entry on oeis.org

0, 2, 3, 64, 5, 1512, 7, 2097152, 6561, 1001000, 11, 8916136280064, 13, 1475791800, 11441250, 1152921504606846976, 17, 21979796247097344, 19, 262144000000001280000000, 37823053842, 12855002631059864, 23, 442501521100279866178075737690262732800, 244140625
Offset: 1

Views

Author

Wesley Ivan Hurt, Feb 05 2024

Keywords

Crossrefs

Cf. A000203 (sigma), A323599, A329354, A369740.

Programs

  • Mathematica
    Table[DivisorSum[n, n^DivisorSigma[1, n/#] &, PrimeQ[#] &], {n, 30}]

Formula

a(p^k) = p^(k*(1-p^k)/(1-p)), for prime p and k >= 1. - Wesley Ivan Hurt, Jun 26 2024

A369904 a(n) = n * Sum_{p|n, p prime} sigma(n/p) / p.

Original entry on oeis.org

0, 1, 1, 6, 1, 18, 1, 28, 12, 36, 1, 100, 1, 62, 42, 120, 1, 189, 1, 208, 68, 138, 1, 456, 30, 188, 117, 364, 1, 612, 1, 496, 144, 312, 86, 1038, 1, 386, 194, 960, 1, 1080, 1, 820, 477, 558, 1, 1936, 56, 955, 318, 1120, 1, 1782, 162, 1688, 392, 876, 1, 3336, 1, 998, 789
Offset: 1

Views

Author

Wesley Ivan Hurt, Feb 05 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n*DivisorSum[n, DivisorSigma[1, n/#]/# &, PrimeQ[#] &], {n, 100}]

Formula

a(p^k) = p^(k-1)*(p^k-1)/(p-1), for prime p and k >= 1. - Wesley Ivan Hurt, Jun 26 2024
Showing 1-5 of 5 results.