A302353
a(n) = Sum_{k=0..n} k^n*binomial(2*n-k,n).
Original entry on oeis.org
1, 1, 7, 69, 936, 16290, 345857, 8666413, 250355800, 8191830942, 299452606190, 12095028921250, 534924268768540, 25710497506696860, 1334410348734174285, 74379234152676275325, 4431350132232658244400, 281020603194039519937590, 18900157831016574533520330, 1343698678390575915132318870
Offset: 0
For n = 4 we have:
------------------------
0 1 2 3 [4]
------------------------
0, 1, 17, 98, 354, ... A000538 (partial sums of fourth powers)
0, 1, 18, 116, 470, ... A101089 (partial sums of A000538)
0, 1, 19, 135, 605, ... A101090 (partial sums of A101089)
0, 1, 20, 155, 760, ... A101091 (partial sums of A101090)
0, 1, 21, 176, [936], ... A254681 (partial sums of A101091)
------------------------
therefore a(4) = 936.
-
Join[{1}, Table[Sum[k^n Binomial[2 n - k, n], {k, 0, n}], {n, 19}]]
Table[SeriesCoefficient[HurwitzLerchPhi[x, -n, 0]/(1 - x)^(n + 1), {x, 0, n}], {n, 0, 19}]
A371836
a(n) = Sum_{k=0..floor(n/2)} n^k * binomial(2*n-2*k-1,n-2*k).
Original entry on oeis.org
1, 1, 5, 19, 91, 426, 2190, 11467, 63811, 365806, 2200978, 13677962, 88553726, 591576220, 4093814812, 29164567635, 214244414371, 1616044475734, 12523774634922, 99418836782602, 808492937082410, 6720935024074092, 57100849909374340, 495022008799053006
Offset: 0
-
Join[{1}, Table[Sum[n^k*Binomial[2*n-2*k-1,n-1], {k, 0, n/2}], {n, 1, 25}]] (* Vaclav Kotesovec, Apr 08 2024 *)
-
a(n) = sum(k=0, n\2, n^k*binomial(2*n-2*k-1, n-2*k));
A371837
a(n) = Sum_{k=0..floor(n/3)} n^k * binomial(2*n-3*k-1,n-3*k).
Original entry on oeis.org
1, 1, 3, 13, 51, 201, 834, 3529, 15075, 65431, 288278, 1285263, 5799470, 26492103, 122432628, 572291385, 2705760291, 12937116213, 62542367166, 305668511259, 1510080076410, 7539381024297, 38034307340076, 193835252945487, 997724306958606, 5185731234177001
Offset: 0
-
Join[{1}, Table[Sum[n^k*Binomial[2*n-3*k-1,n-1], {k, 0, n/3}], {n, 1, 25}]] (* Vaclav Kotesovec, Apr 08 2024 *)
-
a(n) = sum(k=0, n\3, n^k*binomial(2*n-3*k-1, n-3*k));
A368506
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=0..n} k^(n-j) * binomial(j+k-1,j).
Original entry on oeis.org
1, 1, 0, 1, 2, 0, 1, 4, 3, 0, 1, 6, 11, 4, 0, 1, 8, 24, 26, 5, 0, 1, 10, 42, 82, 57, 6, 0, 1, 12, 65, 188, 261, 120, 7, 0, 1, 14, 93, 360, 787, 804, 247, 8, 0, 1, 16, 126, 614, 1870, 3204, 2440, 502, 9, 0, 1, 18, 164, 966, 3810, 9476, 12900, 7356, 1013, 10, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 2, 4, 6, 8, 10, 12, ...
0, 3, 11, 24, 42, 65, 93, ...
0, 4, 26, 82, 188, 360, 614, ...
0, 5, 57, 261, 787, 1870, 3810, ...
0, 6, 120, 804, 3204, 9476, 23112, ...
0, 7, 247, 2440, 12900, 47590, 139134, ...
-
T(n, k) = sum(j=0, n, k^(n-j)*binomial(j+k-1, j));
A368510
a(n) = Sum_{k=0..n} n^(n-k) * binomial(k+n,k).
Original entry on oeis.org
1, 3, 16, 113, 1026, 11782, 166776, 2825349, 55797790, 1258065866, 31866312336, 895430095738, 27632885411236, 928823226029532, 33772464199743184, 1320627875038128045, 55259636489069057910, 2463499964955575965954, 116560977980742613228704
Offset: 0
Showing 1-5 of 5 results.
Comments