A293579 Number of compositions of n where each part i is marked with a word of length i over a binary alphabet whose letters appear in alphabetical order and both letters occur at least once in the composition.
3, 16, 66, 248, 892, 3136, 10888, 37536, 128880, 441472, 1510176, 5161856, 17635264, 60233728, 205697152, 702386688, 2398283520, 8188622848, 27958448640, 95457597440, 325915589632, 1112751357952, 3799182641152, 12971244625920, 44286646775808, 151204164960256
Offset: 2
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 2..1000
Crossrefs
Column k=2 of A261781.
Programs
-
Maple
b:= proc(n, k) option remember; `if`(n=0, 1, add(b(n-j, k)*binomial(j+k-1, k-1), j=1..n)) end: a:= n-> (k->add(b(n, k-i)*(-1)^i*binomial(k, i), i=0..k))(2): seq(a(n), n=2..30);
-
Mathematica
Table[Simplify[2^(n/2 - 2)*((Sqrt[2]+1)^(n+1) - (Sqrt[2]-1)^(n+1)) - 2^n], {n, 2, 20}] (* Vaclav Kotesovec, Oct 14 2017 *)
Formula
From Vaclav Kotesovec, Oct 14 2017: (Start)
a(n) = 6*a(n-1) - 10*a(n-2) + 4*a(n-3).
a(n) ~ 2^(n/2 - 2) * (1+sqrt(2))^(n+1).
a(n) = 2^(n/2 - 2) * ((sqrt(2)+1)^(n+1) - (sqrt(2)-1)^(n+1)) - 2^n.
(End)