cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A293569 Partitions with designated summands in which no parts are multiples of 3.

Original entry on oeis.org

1, 1, 3, 4, 9, 12, 21, 29, 48, 64, 99, 132, 195, 257, 366, 480, 666, 864, 1173, 1511, 2016, 2576, 3384, 4296, 5574, 7027, 9015, 11296, 14355, 17880, 22527, 27908, 34896, 43008, 53406, 65508, 80844, 98711, 121128, 147272, 179784, 217704, 264489, 319064
Offset: 0

Views

Author

Seiichi Manyama, Oct 12 2017

Keywords

Examples

			n = 3        n = 4            n = 5
----------   --------------   ------------------
2'+ 1'       4'               5'
1'+ 1 + 1    2'+ 2            4'+ 1'
1 + 1'+ 1    2 + 2'           2'+ 2 + 1'
1 + 1 + 1'   2'+ 1'+ 1        2 + 2'+ 1'
             2'+ 1 + 1'       2'+ 1'+ 1 + 1
             1'+ 1 + 1 + 1    2'+ 1 + 1'+ 1
             1 + 1'+ 1 + 1    2'+ 1 + 1 + 1'
             1 + 1 + 1'+ 1    1'+ 1 + 1 + 1 + 1
             1 + 1 + 1 + 1'   1 + 1'+ 1 + 1 + 1
                              1 + 1 + 1'+ 1 + 1
                              1 + 1 + 1 + 1'+ 1
                              1 + 1 + 1 + 1 + 1'
----------   --------------   ------------------
a(3) = 4.    a(4) = 9.        a(5) = 12.
		

Crossrefs

Cf. A077285 (PD(n)), A102186 (PDO(n)), A293629.

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1-x^(6*k))^2 / ( (1-x^k)^2 * (1+x^k) * (1+x^(9*k)) ), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 13 2017 *)
  • Ruby
    def partition(n, min, max)
      return [[]] if n == 0
      [max, n].min.downto(min).flat_map{|i| partition(n - i, min, i).map{|rest| [i, *rest]}}
    end
    def A(k, n)
      partition(n, 1, n).select{|i| i.all?{|j| j % k > 0}}.map{|a| a.each_with_object(Hash.new(0)){|v, o| o[v] += 1}.values.inject(:*)}.inject(:+)
    end
    def A293569(n)
      [1] + (1..n).map{|i| A(3, i)}
    end
    p A293569(40)

Formula

Expansion of eta(q^6)^2 * eta(q^9) / (eta(q) * eta(q^2) * eta(q^18)) in powers of q.
a(n) ~ 5^(1/4) * exp(2*Pi*sqrt(5*n/3)/3) / (2 * 3^(7/4)* n^(3/4)). - Vaclav Kotesovec, Oct 13 2017

A293628 Expansion of Product_{k>0} ((1 - q^(2*k))^3*(1 - q^(6*k))*(1 - q^(12*k)))/((1 - q^k)^4*(1 - q^(4*k))).

Original entry on oeis.org

1, 4, 11, 28, 64, 136, 274, 528, 982, 1772, 3115, 5352, 9012, 14904, 24252, 38888, 61527, 96156, 148584, 227204, 344056, 516296, 768206, 1133952, 1661326, 2416816, 3492442, 5014932, 7157996, 10158672, 14339032, 20134888, 28133641, 39124028, 54161282, 74652260
Offset: 0

Views

Author

Seiichi Manyama, Oct 13 2017

Keywords

Crossrefs

Cf. A102186 (PDO(n)).

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1+x^k)^3 * (1-x^(6*k)) * (1-x^(12*k)) / ((1-x^k) * (1-x^(4*k))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 15 2017 *)

Formula

a(n) = (1/2) * A102186(3*n+2).
a(n) ~ 5^(1/4) * exp(sqrt(5*n/3)*Pi) / (2^(7/2) * 3^(5/4) * n^(3/4)). - Vaclav Kotesovec, Oct 15 2017
Showing 1-2 of 2 results.