A293655 Numbers having in binary representation more zeros than their squares.
181, 5221, 11309, 19637, 21577, 22805, 43151, 69451, 74969, 76845, 82709, 83539, 85029, 86283, 86581, 91205, 148245, 165013, 165061, 165418, 166027, 170021, 172213, 172615, 173095, 173101, 173162, 173331, 180405, 182433, 184587, 184885, 185363, 201829, 282713
Offset: 1
Examples
181 in base 2 is 10110101, with 3 zeros, and 181^2 is 111111111111001, with 2 zeros.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Select[Range[3*10^5], DigitCount[#, 2, 0] > DigitCount[#^2, 2, 0] &] (* Michael De Vlieger, Feb 21 2018 *)
-
PARI
nbz(n) = my(b=binary(n)); #b - hammingweight(n); isok(n) = nbz(n) > nbz(n^2); \\ Michel Marcus, Feb 12 2018
-
Python
def count0(n): return bin(n)[2:].count('0') for n in range(1000000): if count0(n*n) < count0(n): print(str(n), end=',')