cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293659 Base-6 circular primes that are not base-6 repunits.

Original entry on oeis.org

11, 31, 71, 191, 211
Offset: 1

Views

Author

Felix Fröhlich, Oct 28 2017

Keywords

Comments

Conjecture: The sequence is finite, with 211 being the last term (see A293142).
Written in base 6 (A007092), the terms are 15, 51, 155, 515, 551. - Antti Karttunen, Nov 26 2017
From Michael De Vlieger, Dec 30 2017: (Start)
This sequence may be particularly constrained to few terms since only {1, 5} are coprime to 6, and any senary circular prime involves just these 2 senary digits. This is because all primes aside from {2, 3} are congruent to {1, 5} (mod 6). Since a senary number consisting of all 5's is divisible by 5 and since we have disqualified prime repunits, the sequence is probably finite.
a(6), if it exists, must be larger than 6^21 = 21936950640377856. (End)

Examples

			71 written in base 6 is 155. The base-6 numbers 155, 515, 551 written in base 10 are 71, 191, 211, respectively and all those numbers are prime, so 71, 191 and 211 are terms of the sequence.
		

Crossrefs

Cf. base-b nonrepunit circular primes: A293657 (b=4), A293658 (b=5), A293660 (b=7), A293661 (b=8), A293662 (b=9), A293663 (b=10).

Programs

  • Mathematica
    With[{b = 6}, Select[Prime@ Range[PrimePi@ b + 1, 10^6], Function[w, And[AllTrue[Array[FromDigits[RotateRight[w, #], b] &, Length@ w - 1], PrimeQ], Union@ w != {1} ]]@ IntegerDigits[#, b] &]] (* or *)
    With[{b = 6}, Select[Flatten@ Array[FromDigits[#, 6] & /@ Most@ Rest@ Tuples[{1, 5}, #] &, 18, 2], Function[w, And[ AllTrue[ Array[ FromDigits[ RotateRight[w, #], b] &, Length@ w], PrimeQ], Union@ w != {1} ]]@ IntegerDigits[#, b] &]] (* Michael De Vlieger, Dec 30 2017 *)
  • PARI
    rot(n) = if(#Str(n)==1, v=vector(1), v=vector(#n-1)); for(i=2, #n, v[i-1]=n[i]); u=vector(#n); for(i=1, #n, u[i]=n[i]); v=concat(v, u[1]); v
    decimal(v, base) = my(w=[]); for(k=0, #v-1, w=concat(w, v[#v-k]*base^k)); sum(i=1, #w, w[i])
    is_circularprime(p, base) = my(db=digits(p, base), r=rot(db), i=0); if(vecmin(db)==0, return(0), while(1, dec=decimal(r, base); if(!ispseudoprime(dec), return(0)); r=rot(r); if(r==db, return(1))))
    forprime(p=1, , if(vecmin(digits(p, 6))!=vecmax(digits(p, 6)), if(is_circularprime(p, 6), print1(p, ", "))))