A293662 Base-9 circular primes that are not base-9 repunits.
11, 13, 17, 19, 23, 37, 43, 47, 67, 71, 73, 79, 101, 149, 173, 181, 211, 233, 347, 421, 443, 613, 641, 647, 673, 719, 727, 971, 1123, 1361, 1429, 1609, 1697, 2153, 2179, 3371, 3547, 3833, 4019, 4091, 4099, 4229, 5227, 5261, 5281, 5683, 5689, 5741, 5749, 5821
Offset: 1
Examples
101 written in base 9 is 122. The base-9 numbers 122, 221, 212 written in base 10 are 101, 181, 173, respectively and all those numbers are prime, so 101, 173 and 181 are terms of the sequence.
Crossrefs
Programs
-
Mathematica
With[{b = 9}, Select[Prime@ Range[PrimePi@ b + 1, 10^3], Function[w, And[AllTrue[Array[FromDigits[RotateRight[w, #], b] &, Length@ w - 1], PrimeQ], Union@ w != {1} ]]@ IntegerDigits[#, b] &]] (* Michael De Vlieger, Dec 30 2017 *)
-
PARI
rot(n) = if(#Str(n)==1, v=vector(1), v=vector(#n-1)); for(i=2, #n, v[i-1]=n[i]); u=vector(#n); for(i=1, #n, u[i]=n[i]); v=concat(v, u[1]); v decimal(v, base) = my(w=[]); for(k=0, #v-1, w=concat(w, v[#v-k]*base^k)); sum(i=1, #w, w[i]) is_circularprime(p, base) = my(db=digits(p, base), r=rot(db), i=0); if(vecmin(db)==0, return(0), while(1, dec=decimal(r, base); if(!ispseudoprime(dec), return(0)); r=rot(r); if(r==db, return(1)))) forprime(p=1, , if(vecmin(digits(p, 9))!=vecmax(digits(p, 9)), if(is_circularprime(p, 9), print1(p, ", "))))
Comments