cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293669 Square array A(n,k), n >= 0, k >= 1, read by antidiagonals downwards, where column k is the expansion of e.g.f. exp(Sum_{j=1..k} x^j).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 3, 7, 1, 1, 1, 3, 13, 25, 1, 1, 1, 3, 13, 49, 81, 1, 1, 1, 3, 13, 73, 261, 331, 1, 1, 1, 3, 13, 73, 381, 1531, 1303, 1, 1, 1, 3, 13, 73, 501, 2611, 9073, 5937, 1, 1, 1, 3, 13, 73, 501, 3331, 19993, 63393, 26785, 1, 1, 1, 3, 13, 73, 501, 4051, 27553, 165873, 465769, 133651, 1
Offset: 0

Views

Author

Seiichi Manyama, Oct 14 2017

Keywords

Examples

			Square array begins:
   1,  1,   1,   1,   1, ...
   1,  1,   1,   1,   1, ...
   1,  3,   3,   3,   3, ...
   1,  7,  13,  13,  13, ...
   1, 25,  49,  73,  73, ...
   1, 81, 261, 381, 501, ...
		

Crossrefs

Rows n=0-1 give A000012.
Main diagonal gives A000262.

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(n=0, 1, add(
          A(n-j, k)*binomial(n-1, j-1)*j!, j=1..min(n, k)))
        end:
    seq(seq(A(n, 1+d-n), n=0..d), d=0..12);  # Alois P. Heinz, Nov 11 2020
  • Mathematica
    A[0, ] = 1; A[n /; n >= 0, k_ /; k >= 1] := A[n, k] = (n-1)!*Sum[j*A[n-j, k]/(n-j)!, {j, 1, Min[k, n]}]; A[, ] = 0;
    Table[A[n, d-n+1], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Feb 13 2021 *)

Formula

A(0,k) = 1 and A(n,k) = (n-1)! * Sum_{j=1..min(k,n)} j*A(n-j,k)/(n-j)!.