A293709 Number of Hamiltonian walks on a Sierpinski fractal.
1, 2, 10, 92, 1852, 78032, 6846876, 1255156712, 482338029046, 387869817764474, 652822489612455344, 2300645402905295350788, 16976857303773016457918252
Offset: 2
Links
- András Kaszanyitzky, The generalized Sierpinski Arrowhead Curve, arXiv:1710.08480 [math.CO], 2017.
- András Kaszanyitzky, Triangular fractal approximating graphs and their covering paths and cycles, arXiv:1710.09475 [math.CO], 2017.
- Jelena Stajic, Suncica Elezovic-Hadzic, Hamiltonian walks on Sierpinski and n-simplex fractals, arXiv:cond-mat/0310777 [cond-mat.stat-mech], 2003-2005.
Crossrefs
Cf. A112676.
Programs
-
Python
# Using graphillion from graphillion import GraphSet def make_n_triangular_grid_graph(n): s = 1 grids = [] for i in range(n + 1, 1, -1): for j in range(i - 1): a, b, c = s + j, s + j + 1, s + i + j grids.extend([(a, b), (a, c), (b, c)]) s += i return grids def A293709(n): universe = make_n_triangular_grid_graph(n - 1) GraphSet.set_universe(universe) start, goal = 1, n * (n + 1) // 2 paths = GraphSet.paths(start, goal, is_hamilton=True) return paths.len() print([A293709(n) for n in range(2, 10)]) # Seiichi Manyama, Dec 05 2020
Extensions
a(10)-a(14) from Seiichi Manyama, Dec 05 2020