A293718 Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of e.g.f. exp(Sum_{j=1..k} j*x^j).
1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 5, 13, 1, 1, 1, 5, 31, 73, 1, 1, 1, 5, 31, 145, 281, 1, 1, 1, 5, 31, 241, 1181, 1741, 1, 1, 1, 5, 31, 241, 1661, 9661, 8485, 1, 1, 1, 5, 31, 241, 2261, 16861, 77155, 57233, 1, 1, 1, 5, 31, 241, 2261, 20461, 181315, 794081
Offset: 0
Examples
Square array begins: 1, 1, 1, 1, 1, ... 1, 1, 1, 1, 1, ... 1, 5, 5, 5, 5, ... 1, 13, 31, 31, 31, ... 1, 73, 145, 241, 241, ... 1, 281, 1181, 1661, 2261, ...
Links
- Seiichi Manyama, Antidiagonals n = 0..139, flattened
Crossrefs
Formula
A(0,k) = 1 and A(n,k) = (n-1)! * Sum_{j=1..min(k,n)} j^2*A(n-j,k)/(n-j)!.