cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A293669 Square array A(n,k), n >= 0, k >= 1, read by antidiagonals downwards, where column k is the expansion of e.g.f. exp(Sum_{j=1..k} x^j).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 3, 7, 1, 1, 1, 3, 13, 25, 1, 1, 1, 3, 13, 49, 81, 1, 1, 1, 3, 13, 73, 261, 331, 1, 1, 1, 3, 13, 73, 381, 1531, 1303, 1, 1, 1, 3, 13, 73, 501, 2611, 9073, 5937, 1, 1, 1, 3, 13, 73, 501, 3331, 19993, 63393, 26785, 1, 1, 1, 3, 13, 73, 501, 4051, 27553, 165873, 465769, 133651, 1
Offset: 0

Views

Author

Seiichi Manyama, Oct 14 2017

Keywords

Examples

			Square array begins:
   1,  1,   1,   1,   1, ...
   1,  1,   1,   1,   1, ...
   1,  3,   3,   3,   3, ...
   1,  7,  13,  13,  13, ...
   1, 25,  49,  73,  73, ...
   1, 81, 261, 381, 501, ...
		

Crossrefs

Rows n=0-1 give A000012.
Main diagonal gives A000262.

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(n=0, 1, add(
          A(n-j, k)*binomial(n-1, j-1)*j!, j=1..min(n, k)))
        end:
    seq(seq(A(n, 1+d-n), n=0..d), d=0..12);  # Alois P. Heinz, Nov 11 2020
  • Mathematica
    A[0, ] = 1; A[n /; n >= 0, k_ /; k >= 1] := A[n, k] = (n-1)!*Sum[j*A[n-j, k]/(n-j)!, {j, 1, Min[k, n]}]; A[, ] = 0;
    Table[A[n, d-n+1], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Feb 13 2021 *)

Formula

A(0,k) = 1 and A(n,k) = (n-1)! * Sum_{j=1..min(k,n)} j*A(n-j,k)/(n-j)!.

A293724 Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of e.g.f. exp(Sum_{j=1..k} j^2*x^j).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 9, 25, 1, 1, 1, 9, 79, 241, 1, 1, 1, 9, 79, 457, 1041, 1, 1, 1, 9, 79, 841, 5901, 10681, 1, 1, 1, 9, 79, 841, 7821, 66841, 60649, 1, 1, 1, 9, 79, 841, 10821, 118681, 720259, 658785, 1, 1, 1, 9, 79, 841, 10821, 136681, 1782019
Offset: 0

Views

Author

Seiichi Manyama, Oct 15 2017

Keywords

Examples

			Square array begins:
   1,    1,    1,    1,     1, ...
   1,    1,    1,    1,     1, ...
   1,    9,    9,    9,     9, ...
   1,   25,   79,   79,    79, ...
   1,  241,  457,  841,   841, ...
   1, 1041, 5901, 7821, 10821, ...
		

Crossrefs

Columns k=1..4 give A000012, A293720, A293721, A293723.
Rows n=0-1 give A000012.
Main diagonal gives A255807.

Formula

A(0,k) = 1 and A(n,k) = (n-1)! * Sum_{j=1..min(k,n)} j^3*A(n-j,k)/(n-j)!.

A293716 E.g.f.: exp(x + 2*x^2 + 3*x^3).

Original entry on oeis.org

1, 1, 5, 31, 145, 1181, 9661, 77155, 794081, 8132185, 86715541, 1055208551, 12921555505, 166589628661, 2320023320525, 32814550442731, 486870347843521, 7598251948512305, 121035455085677221, 2008950533339620015, 34595064617371963601, 609252363677557660621
Offset: 0

Views

Author

Seiichi Manyama, Oct 15 2017

Keywords

Crossrefs

Column k=3 of A293718.

Programs

  • Mathematica
    CoefficientList[Series[E^(x+2*x^2+3*x^3), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Oct 15 2017 *)
  • PARI
    N=66; x='x+O('x^N); Vec(serlaplace(exp(x+2*x^2+3*x^3)))

Formula

a(n) ~ 3^(2*n/3 - 1/2) * n^(2*n/3) * exp(-76/729 + 19*3^(1/3)*n^(1/3)/81 + 2*3^(2/3)*n^(2/3)/9 - 2*n/3). - Vaclav Kotesovec, Oct 15 2017

A293717 E.g.f.: exp(x + 2*x^2 + 3*x^3 + 4*x^4).

Original entry on oeis.org

1, 1, 5, 31, 241, 1661, 16861, 181315, 2091041, 25320601, 354057301, 5149373351, 78917379025, 1281478466581, 22335899616941, 403305062965771, 7612564457632321, 150561914023428785, 3113594618276542501, 66512360356769464111, 1474726318816689523121
Offset: 0

Views

Author

Seiichi Manyama, Oct 15 2017

Keywords

Crossrefs

Column k=4 of A293718.

Programs

  • Mathematica
    With[{nn=20},CoefficientList[Series[Exp[x+2x^2+3x^3+4x^4],{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Nov 15 2020 *)
  • PARI
    N=66; x='x+O('x^N); Vec(serlaplace(exp(x+2*x^2+3*x^3+4*x^4)))
Showing 1-4 of 4 results.