cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293731 E.g.f.: exp(Sum_{n>=1} n*A000041(n)*x^n), where A000041(n) is the number of partitions of n.

Original entry on oeis.org

1, 1, 9, 79, 937, 12501, 204361, 3703099, 76460049, 1732292137, 43118784361, 1161659388231, 33771008443129, 1050438417598909, 34839221780655657, 1225699869182970931, 45592202322141065761, 1786608566424333658449, 73553912374465725486409
Offset: 0

Views

Author

Seiichi Manyama, Oct 15 2017

Keywords

Examples

			a(5) = 4! * (1^2*1*a(4)/4! + 2^2*2*a(3)/3! + 3^2*3*a(2)/2! + 4^2*5*a(1)/1! + 5^2*7*a(0)/0!) = 12501.
		

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[E^Sum[k*PartitionsP[k]*x^k, {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Oct 18 2017 *)

Formula

a(0) = 1 and a(n) = (n-1)! * Sum_{k=1..n} k^2*A000041(k)*a(n-k)/(n-k)! for n > 0.