A293745 Number of sets of nonempty words with a total of n letters over senary alphabet such that within each prefix of a word every letter of the alphabet is at least as frequent as the subsequent alphabet letter.
1, 1, 2, 6, 15, 45, 136, 429, 1406, 4771, 16749, 60453, 224948, 857010, 3350574, 13366375, 54494538, 226020624, 954737292, 4092229831, 17813005015, 78509835288, 350592604663, 1582430253294, 7223028969003, 33275812688050, 154790795962448, 725871751770492
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Programs
-
Maple
g:= proc(n) option remember; `if`(n<4, [1, 1, 2, 4][n+1], ((20*n^2+184*n+336)*g(n-1) +4*(n-1)*(10*n^2+58*n+33)*g(n-2) -144*(n-1)*(n-2)*g(n-3) -144*(n-1)*(n-2)*(n-3)*g(n-4))/ ((n+5)*(n+8)*(n+9))) end: b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(b(n-i*j, i-1)*binomial(g(i), j), j=0..n/i))) end: a:= n-> b(n$2): seq(a(n), n=0..35);
-
Mathematica
h[l_] := Function[n, Total[l]!/Product[Product[1 + l[[i]] - j + Sum[If[ l[[k]] < j, 0, 1], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]][Length[l]]; g[n_, i_, l_] := g[n, i, l] = If[n == 0, h[l], If[i < 1, 0, If[i == 1, h[Join[l, Table[1, n]]], g[n, i - 1, l] + If[i > n, 0, g[n - i, i, Append[l, i]]]]]]; b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1, k]*Binomial[g[i, k, {}], j], {j, 0, n/i}]]]; a[n_] := b[n, n, 6]; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Jun 06 2018, using code from A293112 *)
Formula
G.f.: Product_{j>=1} (1+x^j)^A007579(j).