cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293806 a(0) = a(1) = 1; a(n) = [x^n] Product_{k=1..n-1} 1/(1 - x^a(k)).

Original entry on oeis.org

1, 1, 1, 4, 6, 8, 11, 14, 19, 24, 30, 37, 47, 57, 70, 84, 102, 121, 144, 170, 202, 235, 275, 319, 372, 429, 495, 567, 652, 742, 848, 963, 1095, 1237, 1399, 1574, 1775, 1990, 2235, 2499, 2795, 3114, 3473, 3859, 4292, 4755, 5271, 5827, 6444, 7107, 7840, 8625, 9493, 10422, 11444, 12541
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 16 2017

Keywords

Comments

a(n) = number of partitions of n into preceding terms starting from a(1), a(2), a(3), ... (for n > 1).

Examples

			a(4) = 6 because we have [4], [1a, 1a, 1a, 1a], [1a, 1a, 1a, 1b], [1a, 1a, 1b, 1b],  [1a, 1b, 1b, 1b] and [1b, 1b, 1b, 1b].
G.f. = -x - 2*x^2 + 1/((1 - x)*(1 - x)*(1 - x^4)*(1 - x^6)*(1 - x^8)*(1 - x^11)*(1 - x^14)*(1 - x^19)*...) = 1 + x + x^2 + 4*x^3 + 6*x^4 + 8*x^5 + 11*x^6 + 14*x^7 + 19*x^8 + ...
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1)+`if`(a(i)>n, 0, b(n-a(i), i))))
        end:
    a:= n-> `if`(n<2, 1, b(n, n-1)):
    seq(a(n), n=0..60);  # Alois P. Heinz, Oct 16 2017
  • Mathematica
    a[n_] := a[n] = SeriesCoefficient[Product[1/(1 - x^a[k]), {k, 1, n - 1}], {x, 0, n}]; a[0] = a[1] = 1; Table[a[n], {n, 0, 55}]

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies A(x) = -x - 2*x^2 + Product_{n>=1} 1/(1 - x^a(n)).