A293808 Number T(n,k) of multisets of exactly k nonempty words with a total of n letters over n-ary alphabet such that within each prefix of a word every letter of the alphabet is at least as frequent as the subsequent alphabet letter; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
1, 0, 1, 0, 2, 1, 0, 4, 2, 1, 0, 10, 7, 2, 1, 0, 26, 18, 7, 2, 1, 0, 76, 56, 22, 7, 2, 1, 0, 232, 168, 68, 22, 7, 2, 1, 0, 764, 543, 218, 73, 22, 7, 2, 1, 0, 2620, 1792, 721, 234, 73, 22, 7, 2, 1, 0, 9496, 6187, 2438, 791, 240, 73, 22, 7, 2, 1, 0, 35696, 22088, 8491, 2702, 811, 240, 73, 22, 7, 2, 1
Offset: 0
Examples
T(0,0) = 1: {}. T(3,1) = 4: {aaa}, {aab}, {aba}, {abc}. T(3,2) = 2: {a,aa}, {a,ab}. T(3,3) = 1: {a,a,a}. T(4,2) = 7: {a,aaa}, {a,aab}, {a,aba}, {a,abc}, {aa,aa}, {aa,ab}, {ab,ab}. Triangle T(n,k) begins: 1; 0, 1; 0, 2, 1; 0, 4, 2, 1; 0, 10, 7, 2, 1; 0, 26, 18, 7, 2, 1; 0, 76, 56, 22, 7, 2, 1; 0, 232, 168, 68, 22, 7, 2, 1; 0, 764, 543, 218, 73, 22, 7, 2, 1; 0, 2620, 1792, 721, 234, 73, 22, 7, 2, 1; 0, 9496, 6187, 2438, 791, 240, 73, 22, 7, 2, 1; ...
Links
Crossrefs
Programs
-
Maple
g:= proc(n) option remember; `if`(n<2, 1, g(n-1)+(n-1)*g(n-2)) end: b:= proc(n, i) option remember; expand(`if`(n=0 or i=1, x^n, add(binomial(g(i)+j-1, j)*b(n-i*j, i-1)*x^j, j=0..n/i))) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n$2)): seq(T(n), n=0..15);
-
Mathematica
g[n_] := g[n] = If[n < 2, 1, g[n - 1] + (n - 1)*g[n - 2]] ; b[n_, i_] := b[n, i] = Expand[If[n == 0 || i == 1, x^n, Sum[Binomial[g[i] + j - 1, j]*b[n - i*j, i - 1]*x^j, {j, 0, n/i}]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, n}]][b[n, n]]; Table[T[n], {n, 0, 15}] // Flatten (* Jean-François Alcover, Jun 04 2018, from Maple *)
Formula
G.f.: Product_{j>=1} 1/(1-y*x^j)^A000085(j).
Comments