A293815 Number T(n,k) of sets of exactly k nonempty words with a total of n letters over n-ary alphabet such that within each prefix of a word every letter of the alphabet is at least as frequent as the subsequent alphabet letter; triangle T(n,k), n>=0, read by rows.
1, 0, 1, 0, 2, 0, 4, 2, 0, 10, 5, 0, 26, 18, 1, 0, 76, 52, 8, 0, 232, 168, 30, 0, 764, 533, 114, 4, 0, 2620, 1792, 411, 22, 0, 9496, 6161, 1462, 116, 0, 35696, 22088, 5237, 482, 6, 0, 140152, 81690, 18998, 1966, 48, 0, 568504, 313224, 70220, 7682, 274
Offset: 0
Examples
T(0,0) = 1: {}. T(3,1) = 4: {aaa}, {aab}, {aba}, {abc}. T(3,2) = 2: {a,aa}, {a,ab}. T(4,2) = 5: {a,aaa}, {a,aab}, {a,aba}, {a,abc}, {aa,ab}. T(5,3) = 1: {a,aa,ab}. Triangle T(n,k) begins: 1; 0, 1; 0, 2; 0, 4, 2; 0, 10, 5; 0, 26, 18, 1; 0, 76, 52, 8; 0, 232, 168, 30; 0, 764, 533, 114, 4; 0, 2620, 1792, 411, 22; 0, 9496, 6161, 1462, 116; 0, 35696, 22088, 5237, 482, 6; 0, 140152, 81690, 18998, 1966, 48; ...
Links
- Alois P. Heinz, Rows n = 0..300, flattened
Crossrefs
Programs
-
Maple
g:= proc(n) option remember; `if`(n<2, 1, g(n-1)+(n-1)*g(n-2)) end: b:= proc(n, i) option remember; expand(`if`(n=0, 1, `if`(i<1, 0, add(b(n-i*j, i-1)*binomial(g(i), j)*x^j, j=0..n/i)))) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2)): seq(T(n), n=0..15);
-
Mathematica
g[n_] := g[n] = If[n < 2, 1, g[n - 1] + (n - 1)*g[n - 2]]; b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i<1, 0, Sum[b[n - i*j, i-1]* Binomial[g[i], j]*x^j, {j, 0, n/i}]]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][ b[n, n]]; Table[T[n], {n, 0, 15}] // Flatten (* Jean-François Alcover, Jun 04 2018, from Maple *)
Formula
G.f.: Product_{j>=1} (1+y*x^j)^A000085(j).
Comments