A293820 Number of integer-sided polygons having perimeter n, modulo rotations but not reflections.
1, 1, 3, 5, 11, 19, 43, 75, 155, 287, 567, 1053, 2063, 3859, 7455, 14089, 27083, 51463, 98855, 188697, 362675, 695155, 1338087, 2573235, 4962875, 9571195, 18496407, 35759799, 69240899, 134154259, 260235639, 505163055, 981575759, 1908619755, 3714304167, 7233118641, 14095779055
Offset: 3
Keywords
Examples
There are 11 polygons having perimeter 7: 2 triangles (331, 322), 4 quadrilaterals (3211, 3121, 3112, 2221), 3 pentagons (31111, 22111, 21211), 1 hexagon (211111) and 1 heptagon (1111111).
Links
- Andrew Howroyd, Table of n, a(n) for n = 3..200
- James East, Ron Niles, Integer polygons of given perimeter, arXiv:1710.11245 [math.CO], 2017.
Crossrefs
Programs
-
Mathematica
T[n_, k_] := DivisorSum[GCD[n, k], EulerPhi[#]*Binomial[n/#, k/#] &]/n - Binomial[Floor[n/2], k - 1]; a[n_] := Sum[T[n, k], {k, 3, n}] Table[a[n], {n, 3, 40}] (* Jean-François Alcover, Jun 14 2018, after Andrew Howroyd *)
-
PARI
a(n) = sumdiv(n, d, eulerphi(n/d)*2^d)/n - 1 - 2^floor(n/2); \\ Andrew Howroyd, Nov 21 2017
Formula
a(n) = (Sum_{d|n} phi(n/d)*2^d)/n - 1 - 2^floor(n/2). - Andrew Howroyd, Nov 21 2017
Comments