cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A293819 Triangle read by rows of the number of integer-sided k-gons having perimeter n, modulo rotations but not reflections, for k=3..n.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 1, 2, 1, 1, 2, 4, 3, 1, 1, 1, 6, 6, 4, 1, 1, 4, 10, 13, 10, 4, 1, 1, 2, 12, 21, 21, 12, 5, 1, 1, 5, 20, 37, 41, 30, 15, 5, 1, 1, 4, 23, 51, 74, 65, 43, 19, 6, 1, 1, 7, 35, 84, 126, 131, 99, 55, 22, 6, 1, 1, 5, 38, 108, 196, 239, 216, 143, 73, 26, 7, 1, 1, 10, 56, 166, 314, 422, 428
Offset: 3

Views

Author

James East, Oct 16 2017

Keywords

Comments

Rotations are counted only once, but reflections are considered different. For a k-gon to be nondegenerate, the longest side must be shorter than the sum of the remaining sides (equivalently, shorter than n/2). Column k=3 is A008742, column k=4 is A293821, column k=5 is A293822 and column k=6 is A293823.
A formula is given in Section 6 of the East and Niles article.

Examples

			For polygons having perimeter 7, there are: 2 triangles (331, 322), 4 quadrilaterals (3211, 3121, 3112, 2221), 3 pentagons (31111, 22111, 21211), 1 hexagon (211111) and 1 heptagon (1111111). Note that the quadrilaterals 3211 and 3112 are reflections of each other, but these are not rotationally equivalent.
The triangle begins:
n=3:  1;
n=4:  0,  1;
n=5:  1,  1,  1;
n=6:  1,  2,  1,  1;
n=7:  2,  4,  3,  1,  1;
n=8:  1,  6,  6,  4,  1,  1;
n=9:  4, 10, 13, 10,  4,  1,  1;
...
		

Crossrefs

Columns: A008742 (triangles), A293821 (quadrilaterals), A293822 (pentagons), A293823 (hexagons).
Row sums are A293820.
Same triangle with reflection allowed is A124287.

Programs

  • Mathematica
    T[n_, k_] := DivisorSum[GCD[n, k], EulerPhi[#]*Binomial[n/#, k/#]&]/n - Binomial[Floor[n/2], k - 1];
    Table[T[n, k], {n, 3, 16}, {k, 3, n}] // Flatten (* Jean-François Alcover, Jun 14 2018, translated from PARI *)
  • PARI
    T(n,k)={sumdiv(gcd(n,k), d, eulerphi(d)*binomial(n/d,k/d))/n - binomial(floor(n/2), k-1)}
    for(n=3, 10, for(k=3, n, print1(T(n, k), ", ")); print); \\ Andrew Howroyd, Nov 21 2017

Formula

T(n,k) = (Sum_{d|gcd(n,k)} phi(d)*binomial(n/d, k/d))/n - binomial(floor(n/2), k-1). - Andrew Howroyd, Nov 21 2017

A293822 Number of integer-sided pentagons having perimeter n, modulo rotations but not reflections.

Original entry on oeis.org

1, 1, 3, 6, 13, 21, 37, 51, 84, 108, 166, 203, 294, 350, 486, 566, 759, 867, 1133, 1276, 1631, 1815, 2275, 2509, 3094, 3386, 4116, 4473, 5372, 5804, 6896, 7412, 8721, 9333, 10887, 11606, 13433, 14269, 16401, 17367, 19836, 20944, 23782, 25047, 28290, 29726, 33410, 35030, 39195, 41015
Offset: 5

Views

Author

James East, Oct 16 2017

Keywords

Comments

Rotations are counted only once, but reflections are considered different. For a polygon to be nondegenerate, the longest side must be shorter than the sum of the remaining sides (equivalently, shorter than n/2).
A formula is given in Section 6 of the East and Niles article.

Examples

			For example, there are 6 rotation-classes of perimeter-8 pentagons: 32111, 31211, 31121, 31112, 22211, 22121.  Note that 32111 and 31112 are reflections of each other, but these are not rotationally equivalent.
		

Crossrefs

Column k=5 of A293819.
Cf. A293820 (polygons), A293821 (quadrilaterals), A293823 (hexagons).

Programs

  • Mathematica
    T[n_, k_] := DivisorSum[GCD[n, k], EulerPhi[#]*Binomial[n/#, k/#] &]/n - Binomial[Floor[n/2], k - 1];
    a[n_] := T[n, 5];
    Table[a[n], {n, 5, 60}] (* Jean-François Alcover, Jun 14 2018, after Andrew Howroyd and A293819 *)

Formula

G.f.: x^5*(1 + x - x^2 + 2*x^3 + 7*x^4 + 2*x^5 - 2*x^6 + x^8) / ((1 - x)^5*(1 + x)^4*(1 + x + x^2 + x^3 + x^4)) (conjectured). - Colin Barker, Nov 01 2017

A008742 Molien series for 3-dimensional group [3,3 ]+ = 332.

Original entry on oeis.org

1, 0, 1, 1, 2, 1, 4, 2, 5, 4, 7, 5, 10, 7, 12, 10, 15, 12, 19, 15, 22, 19, 26, 22, 31, 26, 35, 31, 40, 35, 46, 40, 51, 46, 57, 51, 64, 57, 70, 64, 77, 70, 85, 77, 92, 85, 100, 92, 109, 100, 117, 109, 126, 117, 136
Offset: 0

Views

Author

Keywords

Comments

a(n) is also the number of integer-sided triangles having perimeter n + 3, modulo rotations but not reflections. - James East, Oct 16 2017

Examples

			For n = 6, there are 4 rotation-classes of perimeter-9 triangles: 441, 432, 423, 333. Note that 432 and 423 are reflections of each other, but these are not rotationally equivalent. So a(6) = 4. - _James East_, Oct 16 2017
		

Crossrefs

Cf. A005044, A293819 (k-gon triangle), A293820 (polygons), A293821 (quadrilaterals), A293822 (pentagons), A293823 (hexagons)

Programs

  • GAP
    a:=[1,0,1,1,2,1,4];; for n in [8..60] do a[n]:=2*a[n-2]+a[n-3]-a[n-4] -2*a[n-5]+a[n-7]; od; a; # G. C. Greubel, Aug 03 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 60); Coefficients(R!( (1+x^6)/((1-x^2)*(1-x^3)*(1-x^4)) )); // G. C. Greubel, Aug 03 2019
    
  • Mathematica
    CoefficientList[Series[(1+x^6)/((1-x^2)*(1-x^3)*(1-x^4)), {x, 0, 60}], x] (* Vaclav Kotesovec, Apr 29 2014 *)
  • PARI
    my(x='x+O('x^60)); Vec((1+x^6)/((1-x^2)*(1-x^3)*(1-x^4))) \\ G. C. Greubel, Aug 03 2019
    
  • Sage
    ((1+x^6)/((1-x^2)*(1-x^3)*(1-x^4))).series(x, 60).coefficients(x, sparse=False) # G. C. Greubel, Aug 03 2019
    

Formula

G.f.: (1+x^6)/((1-x^2)*(1-x^3)*(1-x^4)).
a(n) ~ 1/24*n^2. - Ralf Stephan, Apr 29 2014
a(n) = 1 - 19*n/24 - 5*n^2/24 + 4/3*floor(n/3) + (n/2+3/4)*floor(n/2) + 2/3*floor((n+1)/3). - Vaclav Kotesovec, Apr 29 2014
a(n) = floor((n^2+3*n+20)/24+(2*n+3)*(-1)^n/16). - Tani Akinari, Jun 20 2014
G.f.: (1-x^2+x^4)/((1+x+x^2)*(1+x)^2*(1-x)^3). - R. J. Mathar, Dec 18 2014

A293821 Number of integer-sided quadrilaterals having perimeter n, modulo rotations but not reflections.

Original entry on oeis.org

1, 1, 2, 4, 6, 10, 12, 20, 23, 35, 38, 56, 60, 84, 88, 120, 125, 165, 170, 220, 226, 286, 292, 364, 371, 455, 462, 560, 568, 680, 688, 816, 825, 969, 978, 1140, 1150, 1330, 1340, 1540, 1551, 1771, 1782, 2024, 2036, 2300, 2312, 2600, 2613, 2925, 2938, 3276, 3290, 3654, 3668, 4060
Offset: 4

Views

Author

James East, Oct 16 2017

Keywords

Comments

Rotations are counted only once, but reflections are considered different. For a polygon to be nondegenerate, the longest side must be shorter than the sum of the remaining sides (equivalently, shorter than n/2).
A formula is given in Section 6 of the East and Niles article.

Examples

			For example, there are 4 rotation-classes of perimeter-7 quadrilaterals: 3211, 3121, 3112, 2221. Note that 3211 and 3112 are reflections of each other, but these are not rotationally equivalent.
		

Crossrefs

Column k=4 of A293819.
Cf. A008742 (triangles), A293820 (polygons), A293822 (pentagons).

Programs

  • Mathematica
    T[n_, k_] := DivisorSum[GCD[n, k], EulerPhi[#]*Binomial[n/#, k/#] &]/n - Binomial[Floor[n/2], k - 1];
    a[n_] := T[n, 4];
    Table[a[n], {n, 4, 59}] (* Jean-François Alcover, Jan 29 2019, after Andrew Howroyd in A293819 *)

Formula

Conjectures from Colin Barker, Nov 01 2017: (Start)
G.f.: x^3*(1 - x^2 + 2*x^3) / ((1 - x)^4*(1 + x)^3*(1 + x^2)).
a(n) = (1/96)*(-3*(-1 + (-1)^n + 4*i*(-i)^n - 4*i*i^n) + (7 - 15*(-1)^n)*n + 3*(-1 + (-1)^n)*n^2 + 2*n^3) where i=sqrt(-1).
(End)

A293823 Number of integer-sided hexagons having perimeter n, modulo rotations but not reflections.

Original entry on oeis.org

1, 1, 4, 10, 21, 41, 74, 126, 196, 314, 448, 672, 912, 1302, 1692, 2334, 2937, 3927, 4828, 6292, 7579, 9679, 11466, 14378, 16808, 20748, 23968, 29198, 33388, 40188, 45564, 54264, 61047, 72033, 80484, 94164, 104587, 121429, 134134, 154672, 170016, 194810, 213200, 242880, 264730, 300002
Offset: 6

Views

Author

James East, Oct 16 2017

Keywords

Comments

Rotations are counted only once, but reflections are considered different. For a polygon to be nondegenerate, the longest side must be shorter than the sum of the remaining sides (equivalently, shorter than n/2).
A formula is given in Section 6 of the East and Niles article.

Examples

			For example, there are 10 rotation-classes of perimeter-9 hexagons: 411111, 321111, 312111, 311211, 311121, 311112, 222111, 221211, 221121, 212121. Note that 321111 and 311112 are reflections of each other, but these are not rotationally equivalent.
		

Crossrefs

Column k=6 of A293819.
Cf. A293820 (polygons), A293822 (pentagons).

Programs

  • Mathematica
    T[n_, k_] := DivisorSum[GCD[n, k], EulerPhi[#]*Binomial[n/#, k/#] &]/n - Binomial[Floor[n/2], k - 1];
    a[n_] := T[n, 6];
    Table[a[n], {n, 6, 51}] (* Jean-François Alcover, Jan 29 2019, after Andrew Howroyd in A293819 *)

Formula

G.f.: x^6*(1 + x + 5*x^3 + 10*x^4 + 7*x^5 + 3*x^6 + 6*x^7 + 4*x^8 + 2*x^9) / ((1 - x)^6*(1 + x)^5*(1 - x + x^2)*(1 + x + x^2)^2) (conjectured). - Colin Barker, Nov 01 2017

A293818 Number of integer-sided polygons having perimeter n, modulo rotations and reflections.

Original entry on oeis.org

1, 1, 3, 5, 10, 16, 32, 54, 102, 180, 336, 607, 1144, 2098, 3960, 7397, 14022, 26452, 50404, 95821, 183322, 350554, 673044, 1292634, 2489502, 4797694, 9264396, 17904220, 34652962, 67125898, 130182972, 252679320, 490918440, 954505718, 1857413460, 3616951513, 7048412792, 13744169104
Offset: 3

Views

Author

James East, Oct 16 2017

Keywords

Comments

Rotations and reversals are counted only once. For a polygon to be nondegenerate, the longest side must be shorter than the sum of the remaining sides. These are row sums of A124287.
A formula is proved in Theorem 1.6 of the East and Niles article.
The same article shows that a(n) is asymptotic to 2^(n-1) / n.

Examples

			There are 10 polygons having perimeter 7: 2 triangles, 3 quadrilaterals, 3 pentagons, 1 hexagon and 1 heptagon.
		

Crossrefs

Row sums of A124287 (k-gon triangle).
Cf. A293820 (polygons modulo rotations only).

Programs

  • Mathematica
    a[n_] := DivisorSum[n, EulerPhi[n/#]*2^# &]/(2*n) + 2^Floor[(n - 3)/2] - If[Mod[n, 4] < 2, 3*2^Floor[(n - 4)/4], 2^Floor[(n + 2)/4] ];
    Table[a[n], {n, 3, 40}] (* Jean-François Alcover, Jun 14 2018, after Andrew Howroyd *)
  • PARI
    a(n)={sumdiv(n, d, eulerphi(n/d)*2^d)/(2*n) + 2^floor((n-3)/2) - if(n%4<2, 3*2^floor((n-4)/4), 2^floor((n+2)/4))} \\ Andrew Howroyd, Nov 21 2017
Showing 1-6 of 6 results.