cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293897 Sum of proper divisors of n of the form 3k+1.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 5, 1, 8, 1, 5, 1, 1, 1, 15, 8, 1, 1, 5, 1, 14, 1, 12, 1, 11, 1, 21, 1, 1, 8, 5, 1, 20, 14, 15, 1, 8, 1, 27, 1, 1, 1, 21, 8, 36, 1, 18, 1, 1, 1, 40, 20, 1, 1, 15, 1, 32, 8, 21, 14, 23, 1, 39, 1, 18, 1, 5, 1, 38, 26, 24, 8, 14, 1, 71, 1, 1, 1, 40, 1, 44, 1, 27, 1, 11, 21, 51, 32, 1, 20, 21, 1, 57, 1, 40, 1, 35, 1, 70, 8
Offset: 1

Views

Author

Antti Karttunen, Nov 06 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, # &, And[Mod[#, 3] == 1, # != n] &], {n, 105}] (* Michael De Vlieger, Nov 08 2017 *)
  • PARI
    A293897(n) = sumdiv(n,d,(d
    				

Formula

a(n) = A078181(n) - ([n == 1 (mod 3)]*n).
G.f.: Sum_{k>=1} (3*k-2) * x^(6*k-4) / (1 - x^(3*k-2)). - Ilya Gutkovskiy, Apr 14 2021
Sum_{k=1..n} a(k) = c * n^2 + O(n*log(n)), where c = Pi^2/36 - 1/6 = 0.107489... . - Amiram Eldar, Nov 27 2023