A293901 Sum of proper divisors of n of the form 4k+1.
0, 1, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1, 10, 1, 6, 1, 1, 1, 1, 6, 14, 10, 1, 1, 6, 1, 1, 1, 18, 6, 10, 1, 1, 14, 6, 1, 22, 1, 1, 15, 1, 1, 1, 1, 31, 18, 14, 1, 10, 6, 1, 1, 30, 1, 6, 1, 1, 31, 1, 19, 34, 1, 18, 1, 6, 1, 10, 1, 38, 31, 1, 1, 14, 1, 6, 10, 42, 1, 22, 23, 1, 30, 1, 1, 60, 14, 1, 1, 1, 6, 1, 1, 50, 43, 31, 1, 18, 1, 14, 27
Offset: 1
Links
Programs
-
Mathematica
a[n_] := DivisorSum[n, # &, # < n && Mod[#, 4] == 1 &]; Array[a, 100] (* Amiram Eldar, Nov 27 2023 *)
-
PARI
A293901(n) = sumdiv(n,d,(d
Formula
a(n) = Sum_{d|n, d
G.f.: Sum_{k>=1} (4*k-3) * x^(8*k-6) / (1 - x^(4*k-3)). - Ilya Gutkovskiy, Apr 14 2021
Sum_{k=1..n} a(k) = c * n^2 + O(n*log(n)), where c = Pi^2/48 - 1/8 = 0.0806167... . - Amiram Eldar, Nov 27 2023
A293513 Number of proper divisors of n of the form 4k+3.
0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 2, 1, 0, 1, 0, 0, 1, 1, 0, 2, 0, 0, 2, 0, 1, 1, 0, 1, 1, 0, 0, 2, 0, 1, 2, 1, 0, 1, 1, 0, 1, 0, 0, 2, 1, 1, 2, 0, 0, 2, 0, 1, 2, 0, 0, 2, 0, 0, 2, 2, 0, 1, 0, 0, 2, 1, 2, 2, 0, 0, 2, 0, 0, 2, 0, 1, 1, 1, 0, 2, 1, 1, 2, 1, 1, 1, 0, 1, 2, 0, 0, 2, 0, 0, 4
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16384
- R. A. Smith and M. V. Subbarao, The average number of divisors in an arithmetic progression, Canadian Mathematical Bulletin, Vol. 24, No. 1 (1981), pp. 37-41.
Programs
-
Mathematica
a[n_] := DivisorSum[n, 1 &, # < n && Mod[#, 4] == 3 &]; Array[a, 100] (* Amiram Eldar, Nov 25 2023 *)
-
PARI
A293513(n) = sumdiv(n,d,(d
Formula
a(n) = Sum_{d|n, d
G.f.: Sum_{k>=1} x^(8*k-2) / (1 - x^(4*k-1)). - Ilya Gutkovskiy, Apr 14 2021
Sum_{k=1..n} a(k) = n*log(n)/4 + c*n + O(n^(1/3)*log(n)), where c = gamma(3,4) - (2 - gamma)/4 = A256846 - (2 - A001620)/4 = -0.430804... (Smith and Subbarao, 1981). - Amiram Eldar, Nov 25 2023