cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293907 Numbers n for which 10^n mod n = 2^k for some positive integer k.

Original entry on oeis.org

6, 12, 14, 24, 28, 34, 46, 48, 52, 56, 68, 72, 84, 92, 96, 112, 117, 123, 126, 136, 144, 168, 186, 192, 204, 208, 224, 228, 249, 252, 266, 272, 288, 328, 336, 356, 372, 384, 392, 408, 416, 448, 464, 488, 498, 504, 516
Offset: 1

Views

Author

Björn Ch. Buchli, Oct 19 2017

Keywords

Comments

Odd numbers in this sequence: 117, 123, 249, 747, 4043, 5031, 11573, 12129, 14481, 29489, 34719, 35549, 84123, 124631, 173329, 217391, 266799, 458523, 472173, 490561, 551759, 658499, 675431, 721773, 800397, 1375569, 1917843, 2300079, 3194787, 3394893, 4236747, 5031039, 5043957, 5169333, ....

Examples

			For n = 6, 10^6 mod 6 = 4 = 2^2;
For n = 14, 10^14 mod 14 = 2 = 2^1;
For n = 84, 10^84 mod 84 = 64 = 2^6;
For n = 272, 10^272 mod 272 = 256 = 2^8.
		

Crossrefs

Cf. A056969 (10^n modulo n).

Programs

  • Mathematica
    pm2Q[n_]:=Module[{c=PowerMod[10,n,n]},c>1&&IntegerQ[Log2[c]]]; Select[ Range[600],pm2Q] (* Harvey P. Dale, Mar 29 2023 *)
  • PARI
    is(n)=my(k=lift(Mod(10,n)^n)); k>1 && k>>valuation(k,2)==1 \\ Charles R Greathouse IV, Oct 19 2017

Extensions

More terms from Michel Marcus, Oct 19 2017