A293971 Number of sets of exactly nine nonempty words with a total of n letters over n-ary alphabet such that within each prefix of a word every letter of the alphabet is at least as frequent as the subsequent alphabet letter.
45, 740, 7265, 54844, 355786, 2086218, 11402599, 59244154, 296592681, 1444795518, 6898985716, 32478508414, 151439118998, 702039301562, 3246061184641, 15011635714770, 69604533115983, 324297338323040, 1521325113273431, 7199243859471728, 34426802099939524
Offset: 25
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 25..820
Programs
-
Maple
g:= proc(n) option remember; `if`(n<2, 1, g(n-1)+(n-1)*g(n-2)) end: b:= proc(n, i) option remember; series(`if`(n=0, 1, `if`(i<1, 0, add(b(n-i*j, i-1)*binomial(g(i), j)*x^j, j=0..n/i))), x, 10) end: a:= n-> coeff(b(n$2), x, 9): seq(a(n), n=25..49);
Formula
a(n) = [x^n y^9] Product_{j>=1} (1+y*x^j)^A000085(j).