cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293990 a(n) = (3*n + ((n-2) mod 4))/2.

Original entry on oeis.org

1, 3, 3, 5, 7, 9, 9, 11, 13, 15, 15, 17, 19, 21, 21, 23, 25, 27, 27, 29, 31, 33, 33, 35, 37, 39, 39, 41, 43, 45, 45, 47, 49, 51, 51, 53, 55, 57, 57, 59, 61, 63, 63, 65, 67, 69, 69, 71, 73, 75, 75, 77, 79, 81, 81, 83, 85, 87, 87, 89, 91, 93, 93
Offset: 0

Views

Author

Dimitris Valianatos, Oct 21 2017

Keywords

Comments

The product (2/3) * (4/3) * (6/5) * (6/7) * (8/9) * (10/9) * (12/11) * (12/13) * ... = Pi/(2*sqrt(3)). The denominators are a(n) for n >= 1 and numerators are a(n-1) + A093148(n) for n >= 1 -> [2, 4, 6, 6, 8, 10, 12, 12, ...].
Let r(n) = (a(n)-1)/(a(n)+1) if a(n) mod 4 = 1, (a(n)+1)/(a(n)-1) otherwise; then Product_{n>=1} r(n) = (2/1) * (2/1) * (2/3) * (4/3) * (4/5) * (4/5) * (6/5) * (6/7) * ... = Pi*sqrt(3)/2 = 2.72069904635132677...
The odd numbers of partial sums this sequence, are identified with the A003215 sequence. Also the prime numbers that appear in partial sums in this sequence, are identified with the A002407 sequence.

Crossrefs

Programs

  • Magma
    [(3*n+((n-2) mod 4))/2 : n in [0..100]]; // Wesley Ivan Hurt, Oct 29 2017
  • Maple
    A293990:=n->(3*n+((n-2) mod 4))/2: seq(A293990(n), n=0..100); # Wesley Ivan Hurt, Oct 29 2017
  • Mathematica
    Table[(3*n + Mod[(n - 2), 4])/2, {n, 0, 100}] (* Wesley Ivan Hurt, Oct 29 2017 *)
    f[n_] := (3n + Mod[n - 2, 4])/2; Array[f, 65, 0] (* or *)
    LinearRecurrence[{1, 0, 0, 1, -1}, {1, 3, 3, 5, 7}, 65] (* or *)
    CoefficientList[ Series[(x^4 + 2x^3 + 2x + 1)/((x - 1)^2 (x^3 + x^2 + x + 1)), {x, 0, 64}], x] (* Robert G. Wilson v, Nov 28 2017 *)
  • PARI
    a(n) = (3*n + (n-2)%4) / 2
    
  • PARI
    Vec(x*(1 + 2*x + 2*x^3 + x^4) / ((1 - x)^2*(1 + x)*(1 + x^2)) + O(x^30)) \\ Colin Barker, Oct 21 2017
    
  • PARI
    first(n) = my(start=[1,3,3,5,7,9,9,11]); if(n<=8, return(start)); my(res=vector(n)); for (i=1, 8, res[i] = start[i]); for(i = 1, n-8 ,res[i+8] = res[i] + 12); res \\ David A. Corneth, Oct 21 2017
    

Formula

Sum_{n>=0} 1/a(n)^2 = 5*Pi^2/36 = 1.3707783890401886970... = 10*A086729.
(a(n) - n) * (-1)^(n+1) = A134967(n) for n >= 0.
a(n) - n = A162330(n) for n >= 0.
a(n) - n = A285869(n+1) for n >= 0.
a(n) + a(n+1) = A157932(n+2) for n >= 0.
a(n) + (2*n+1) = A047298(n+1) for n >= 0.
From Colin Barker, Oct 21 2017: (Start)
G.f.: x*(1 + 2*x + 2*x^3 + x^4) / ((1 - x)^2*(1 + x)*(1 + x^2)).
a(n) = a(n-1) + a(n-4) - a(n-5) for n > 5.
(End)
a(n + 8) = a(n) + 12. - David A. Corneth, Oct 21 2017
a(4*k+4) * a(4*k+3) - a(4*k+2) * a(4*k+1) = 2*A063305(k+3) for k >= 0.
Sum_{n>=0} 1/(a(n) + a(n+2))^2 = (4*Pi^2 - 27) / 108 = (A214549 - 1) / 4.