A293997 Number of linear chord diagrams having n chords and no chord length larger than five.
1, 1, 3, 15, 105, 945, 3465, 14857, 72905, 393565, 2152693, 10317169, 49808117, 247455873, 1256019673, 6371895677, 31696702545, 157383838325, 785587613797, 3938599251649, 19742522444733, 98655068282297, 492637126850897, 2462204077446773, 12316715419452585
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3, 4, 2, 81, 495, -648, -1590, 208, -5670, -924, 14576, -1536, -2136, -9936, 10656, -2880)
Crossrefs
Column k=5 of A293960.
Programs
-
Mathematica
CoefficientList[Series[-(24x^11-84x^10+76x^9+20x^8-10x^7-90x^6+12x^5+35x^4+4x^2+2x-1)/((5x-1)(576x^15-2016x^14+1584x^13+744x^12+ 456x^11- 2824x^10-380x^9+ 1058x^8+ 170x^7+352x^6+200x^5-59x^4-28x^3-6x^2-2x-1)),{x,0,30}],x] (* or *) LinearRecurrence[ {3,4,2,81,495,-648,-1590,208,-5670,-924,14576,-1536,-2136,-9936,10656,-2880},{1,1,3,15,105,945,3465,14857,72905,393565,2152693,10317169,49808117,247455873,1256019673,6371895677},30] (* Harvey P. Dale, Jan 03 2024 *)
Formula
G.f.: -(24*x^11-84*x^10+76*x^9+20*x^8-10*x^7-90*x^6+12*x^5+35*x^4+4*x^2+2*x-1) / ((5*x-1) *(576*x^15 -2016*x^14 +1584*x^13 +744*x^12 +456*x^11 -2824*x^10 -380*x^9 +1058*x^8 +170*x^7 +352*x^6 +200*x^5 -59*x^4 -28*x^3 -6*x^2 -2*x-1)).