A294006 Number of multisets of exactly four nonempty words with a total of n letters over n-ary alphabet such that within each prefix of a word every letter of the alphabet is at least as frequent as the subsequent alphabet letter.
1, 2, 7, 22, 73, 234, 791, 2702, 9507, 34258, 126807, 482306, 1885031, 7578028, 31316391, 133117500, 581531653, 2611112712, 12037781812, 56962049532, 276345797775, 1373655295948, 6988160240848, 36356528106984, 193225799686632, 1048279646446240
Offset: 4
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 4..803
Programs
-
Maple
g:= proc(n) option remember; `if`(n<2, 1, g(n-1)+(n-1)*g(n-2)) end: b:= proc(n, i) option remember; series(`if`(n=0 or i=1, x^n, add(binomial(g(i)+j-1, j)*b(n-i*j, i-1)*x^j, j=0..n/i)), x, 5) end: a:= n-> coeff(b(n$2), x, 4): seq(a(n), n=4..35);
Formula
a(n) = [x^n y^4] Product_{j>=1} 1/(1-y*x^j)^A000085(j).