cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A294027 Odd bi-unitary abundant numbers with a record small gap to the next term odd bi-unitary abundant number.

Original entry on oeis.org

945, 8505, 15015, 19305, 21735, 33345, 34125, 21961263753, 39891817245
Offset: 1

Views

Author

Amiram Eldar, Oct 22 2017

Keywords

Comments

The corresponding gaps are 7560, 1890, 1050, 330, 210, 150, 30, 12, 6.
The upper ends are 8505, 10395, 16065, 19635, 21945, 33495, 34155, 21961263765, 39891817251.
The bi-unitary version of A294025.

Examples

			Odd bi-unitary abundant numbers are 945, 8505, 10395, 12285, 15015, 16065, 17955, 19305, 19635, 21735, 21945, ...
Their differences are 7560, 1890, 1890, 2730, 1050, 1890, 1350, 330, 2100, 210, ...
The records of small differences are 7560, 1890, 1050, 330, 210, ...
And the corresponding terms are 945, 8505, 15015, 19305, 21735, ...
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Select[Divisors[n], Function[d, CoprimeQ[d, n/d]]]; bsigma[m_] := DivisorSum[m, # &, Last@Intersection[f@#, f[m/#]] == 1 &]; bOddAbundantQ[n_] := OddQ[n] && bsigma[n] > 2 n; s = Select[Range[1000000], bOddAbundantQ]; a = {}; dmin = 50000; Do[d = s[[j + 1]] - s[[j]]; If[d < dmin, AppendTo[a, s[[j]]]; dmin = d], {j, 1, Length[s] - 1}]; a
  • PARI
    udivs(n) = {my(d = divisors(n)); select(x->(gcd(x, n/x)==1), d); }
    gcud(n, m) = vecmax(setintersect(udivs(n), udivs(m)));
    biudivs(n) = select(x->(gcud(x, n/x)==1), divisors(n));
    biusig(n) = vecsum(biudivs(n));
    isok(n) = (n % 2) && (biusig(n) > 2*n);
    lista(nn) = {last = 0; gap = oo; forstep(n=1, nn, 2, if (isok(n), if (last, if (n - last < gap, print1(last, ", "); gap = n - last)); last = n;););} \\ Michel Marcus, Dec 15 2017

Extensions

a(1) added by Amiram Eldar, Aug 22 2018.
a(8)-a(9) from Giovanni Resta, Aug 22 2018