A294027 Odd bi-unitary abundant numbers with a record small gap to the next term odd bi-unitary abundant number.
945, 8505, 15015, 19305, 21735, 33345, 34125, 21961263753, 39891817245
Offset: 1
Examples
Odd bi-unitary abundant numbers are 945, 8505, 10395, 12285, 15015, 16065, 17955, 19305, 19635, 21735, 21945, ... Their differences are 7560, 1890, 1890, 2730, 1050, 1890, 1350, 330, 2100, 210, ... The records of small differences are 7560, 1890, 1050, 330, 210, ... And the corresponding terms are 945, 8505, 15015, 19305, 21735, ...
Programs
-
Mathematica
f[n_] := Select[Divisors[n], Function[d, CoprimeQ[d, n/d]]]; bsigma[m_] := DivisorSum[m, # &, Last@Intersection[f@#, f[m/#]] == 1 &]; bOddAbundantQ[n_] := OddQ[n] && bsigma[n] > 2 n; s = Select[Range[1000000], bOddAbundantQ]; a = {}; dmin = 50000; Do[d = s[[j + 1]] - s[[j]]; If[d < dmin, AppendTo[a, s[[j]]]; dmin = d], {j, 1, Length[s] - 1}]; a
-
PARI
udivs(n) = {my(d = divisors(n)); select(x->(gcd(x, n/x)==1), d); } gcud(n, m) = vecmax(setintersect(udivs(n), udivs(m))); biudivs(n) = select(x->(gcud(x, n/x)==1), divisors(n)); biusig(n) = vecsum(biudivs(n)); isok(n) = (n % 2) && (biusig(n) > 2*n); lista(nn) = {last = 0; gap = oo; forstep(n=1, nn, 2, if (isok(n), if (last, if (n - last < gap, print1(last, ", "); gap = n - last)); last = n;););} \\ Michel Marcus, Dec 15 2017
Extensions
a(1) added by Amiram Eldar, Aug 22 2018.
a(8)-a(9) from Giovanni Resta, Aug 22 2018
Comments