A294035 a(n) = 3^n*hypergeom([-n/3, (1-n)/3, (2-n)/3], [1, 1], -1).
1, 3, 9, 33, 153, 783, 4059, 21087, 110889, 592899, 3214989, 17608077, 97150491, 539331237, 3010588317, 16887545793, 95134584969, 537942476907, 3051902823849, 17365639042449, 99076018204413, 566622950463099, 3247670747106927, 18651711493531539, 107315246617831179
Offset: 0
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 0..1288
Crossrefs
Programs
-
Maple
T := (m,n,x) -> m^n*hypergeom([seq((k-n)/m, k=0..m-1)], [seq(1,k=0..m-2)], x): seq(simplify(T(3, n, -1)), n=0..39);
-
Mathematica
Table[3^n * HypergeometricPFQ[{-n/3, (1 - n)/3, (2 - n)/3}, {1, 1}, -1], {n, 0, 30}] (* Vaclav Kotesovec, Nov 02 2017 *)
Formula
Let H(m, n, x) = m^n*hypergeom([(k-n)/m for k=0..m-1], [1 for k=0..m-2], x) then a(n) = H(3, n, -1).
a(n) ~ sqrt(3) * 6^n / (Pi*n) . - Vaclav Kotesovec, Nov 02 2017
-(54*(n+2))*(n+1)*a(n)+27*(n+2)^2*a(n+1)-(3*(3*n^2+15*n+19))*a(n+2)+(n+3)^2*a(n+3) = 0. - Robert Israel, Nov 02 2017
Comments