A208426
Expansion of Sum_{n>=0} (3*n)!/n!^3 * x^(2*n)/(1-3*x)^(3*n+1).
Original entry on oeis.org
1, 3, 15, 99, 711, 5373, 42099, 338355, 2771127, 23028813, 193610385, 1643215005, 14056350075, 121040308665, 1048212778635, 9122168556819, 79727173530327, 699443806767525, 6156776010386481, 54356715121718349, 481194980656865721, 4270165015550478003
Offset: 0
G.f.: A(x) = 1 + 3*x + 15*x^2 + 99*x^3 + 711*x^4 + 5373*x^5 + 42099*x^6 + ...
where
A(x) = 1/(1-3*x) + 6*x^2/(1-3*x)^4 + 90*x^4/(1-3*x)^7 + 1680*x^6/(1-3*x)^10 + 34650*x^8/(1-3*x)^13 + 756756*x^10/(1-3*x)^16 + ...
-
Table[3^n * HypergeometricPFQ[{1/2 - n/2, -n/2, 1 + n}, {1, 1}, 4/9], {n, 0, 25}] (* Vaclav Kotesovec, Oct 07 2020 *)
-
{a(n)=polcoeff(sum(m=0,n, (3*m)!/m!^3*x^(2*m)/(1-3*x+x*O(x^n))^(3*m+1)),n)}
for(n=0,31,print1(a(n),", "))
-
a(n) = sum(k=0, n\2, (n+k)!/(k!^3*(n-2*k)!) * 3^(n-2*k)); \\ Gheorghe Coserea, Jul 04 2018
A294036
a(n) = 4^n*hypergeom([-n/4, (1-n)/4, (2-n)/4, (3-n)/4], [1, 1, 1], 1).
Original entry on oeis.org
1, 4, 16, 64, 280, 1504, 9856, 70144, 498136, 3449440, 23506816, 160566784, 1115048896, 7905796864, 56994288640, 414928113664, 3034880623576, 22255957312864, 163667338903936, 1208070406612480, 8955840250934080, 66678657938510080
Offset: 0
H(1, n, 1) =
A000007(n), H(2, n, 1) =
A000984(n), H(3, n, 1) =
A006077(n), H(4, n, 1) = this seq., H(1, n, -1) =
A000079(n), H(2, n, -1) =
A098335(n), H(3, n, -1) =
A294035(n), H(4, n, -1) =
A294037(n).
-
T := (m,n,x) -> m^n*hypergeom([seq((k-n)/m, k=0..m-1)], [seq(1, k=0..m-2)], x):
lprint(seq(simplify(T(4,n,1)), n=0..39));
-
Table[4^n * HypergeometricPFQ[{-n/4, (1-n)/4, (2-n)/4, (3-n)/4}, {1, 1, 1}, 1], {n, 0, 30}] (* Vaclav Kotesovec, Nov 02 2017 *)
A294037
a(n) = 4^n*hypergeom([-n/4, (1-n)/4, (2-n)/4, (3-n)/4], [1, 1, 1], -1).
Original entry on oeis.org
1, 4, 16, 64, 232, 544, -1664, -37376, -362024, -2743712, -17780864, -98955776, -442825664, -1129423616, 5536033792, 118591811584, 1224814969816, 9905491019104, 68032143081856, 398051159254528, 1854461906222272, 4784426026102528
Offset: 0
H(1, n, 1) =
A000007(n), H(2, n, 1) =
A000984(n), H(3, n, 1) =
A006077(n), H(4, n, 1) =
A294036(n), H(1, n, -1) =
A000079(n), H(2, n, -1) =
A098335(n), H(3, n, -1) =
A294035(n), H(4, n, -1) = this seq..
-
T := (m,n,x) -> m^n*hypergeom([seq((k-n)/m, k=0..m-1)], [seq(1, k=0..m-2)], x):
lprint(seq(simplify(T(4,n,-1)), n=0..39));
-
Table[4^n * HypergeometricPFQ[{-n/4, (1-n)/4, (2-n)/4, (3-n)/4}, {1, 1, 1}, -1], {n, 0, 20}] (* Vaclav Kotesovec, Nov 02 2017 *)
A349001
The number of Lyndon words of size n from an alphabet of 5 letters and 1st and 2nd letter of the alphabet with equal frequency in the words.
Original entry on oeis.org
1, 3, 4, 14, 46, 174, 656, 2640, 10790, 45340, 193600, 839820, 3686424, 16353924, 73187456, 330052646, 1498335650, 6841899606, 31404443032, 144814450188, 670552118244, 3116578216310, 14534401932712, 67992210407514, 318969964124256, 1500268062754830
Offset: 0
Examples for the alphabet {0,1,2,3,4}:
a(0)=1 counts (), the empty word.
a(3)=14 counts (021) (031) (041) (012) (013) (223) (233) (243) (014) (224) (234) (334) (244) (344), words of length 3 where the letters 0 and the 1 occur both either not or once.
a(4)=46 counts (0011) (0221) (0321) (0421) (0231) (0331) (0431) (0241) (0341) (0441) (0212) (0312) (0412) (0122) (0132) (0142) (0213) (0313) (0413) (0123) (2223) (0133) (2233) (2333) (2433) (0143) (2243) (2343) (2443) (0214) (0314) (0414) (0124) (2224) (2324) (0134) (2234) (2334) (3334) (2434) (0144) (2244) (2344) (3344) (2444) (3444).
-
a(n) = if(n>0, sumdiv(n, d, moebius(n/d)*sum(k=0, d, binomial(d,k)*binomial(2*k,k)))/n, n==0) \\ Andrew Howroyd, Jan 14 2023
Showing 1-4 of 4 results.
Comments